myTestFreqAI/chat/report3.md
zhangkun9038@dingtalk.com 6b365f3107 log
2025-05-05 21:33:46 +08:00

249 lines
7.4 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-------
- Datetime: 2025-05-05 17:27:07
- Model: _qwen3/qwen-plus-latest
- Selected files:
- chat/report.md
- chat/report2.md
- freqtrade/templates/OKXRegressionStrategy.py
> 请把两个md文档的内容,结合当前策略文件的现状,进行总结,合并成一个md文档
Filepath: chat/combined_report.md
Replace lines: 1-0
```markdown
# 📈 Freqtrade AI 策略优化报告OKXRegressionStrategy
## 📅 日期
- Datetime: 2025-05-05 10:06:53
- Model: _qwen3/qwen-plus-latest
---
## 📁 分析文件
### ✅ 已选文件
- `result/backtest-result-2025-05-04_18-41-05.json`
- `result/backtest-result-2025-05-04_18-41-05.meta.json`
- `result/backtest-result-2025-05-04_18-41-05_OKXRegressionStrategy.py`
- `result/backtest-result-2025-05-04_18-41-05_config.json`
- `result/output_filted.log`
### 📄 当前策略文件
- `freqtrade/templates/OKXRegressionStrategy.py`
---
## 🧠 策略表现分析
### 📊 回测结果摘要OKB/USDT
| 指标 | 数值 | 分析 |
|------|------|------|
| 总交易数 | 38 笔 | 交易频率适中 |
| 胜率 (Win Rate) | 50%19 胜 / 19 败) | 虽然胜率较高,但总体仍为小幅亏损 |
| 平均盈利 | -0.16% | 即使在赢的情况下,盈利幅度也小于亏损 |
| 总亏损 | -1.225 USDT | 表明盈亏比失衡 |
| 最大回撤 (Max Drawdown) | -2.52 USDT占账户的 0.25% | 回撤过大说明模型对趋势反转反应迟钝 |
### 🔍 关键问题总结
| 问题 | 影响 | 建议 |
|------|------|--------|
| 胜率虽为 50%,但总体仍亏损 | 盈亏比失衡 | 引入动态 ROI 或强化止盈逻辑 |
| 最大回撤过高 | 资金曲线不稳定 | 加强回调止损逻辑(如 Chandelier Exit |
| 单一退出方式exit_signal | 无法及时止损 | 恢复并优化 trailing stop loss |
| 固定 ATR multiplier | 不适应不同波动率 | 使用波动率百分位动态调整 |
| 无交叉验证 | 模型稳定性未知 | 加入 CV 验证防止过拟合 |
---
## 🛠️ 策略优化建议与实现
### ✅ 1. 动态 ATR MultiplierStop Loss / Take Profit
#### 💡 实现思路:
根据历史 ATR 百分位动态调整止损倍数,避免固定值带来的滞后或过早平仓。
```python
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, profit_percent: float,
after_fill: bool, **kwargs) -> Optional[float]:
if trade.enter_tag != 'long':
return None
dataframe = self.dp.get_pair_dataframe(pair, timeframe=self.timeframe)
atr_col = 'ATR_14'
if atr_col not in dataframe.columns:
dataframe[atr_col] = ta.ATR(dataframe['high'], dataframe['low'], dataframe['close'], timeperiod=14)
latest_row = dataframe.iloc[-1]
historical_atr = dataframe[atr_col].rolling(window=20).mean().dropna().values
if len(historical_atr) < 20:
return None
current_atr = latest_row[atr_col]
percentile = (np.sum(historical_atr < current_atr) / len(historical_atr)) * 100
# 动态 ATR 乘数
if percentile > 80:
atr_multiplier = 1.5 # 高波动 → 更紧止损
elif percentile < 20:
atr_multiplier = 2.5 # 低波动 更松止损
else:
atr_multiplier = 2.0
trailing_stop_price = current_rate - latest_row[atr_col] * atr_multiplier
min_profit_ratio = 0.005 # 至少盈利 0.5%
final_stop_price = max(trailing_stop_price, trade.open_rate * (1 + min_profit_ratio))
return final_stop_price / current_rate - 1
```
---
### ✅ 2. 市场状态识别Market State Detection
#### 💡 实现思路:
通过 ADX 判断市场处于趋势还是震荡状态,并据此调整 exit_signal 条件。
```python
# 在 feature_engineering_expand_all 中添加 ADX
dataframe[f"%-%-adx-{period}"] = ta.ADX(dataframe["high"], dataframe["low"], dataframe["close"], timeperiod=period)
# 在 set_freqai_targets 中设置 market_state
dataframe["market_state"] = np.where(
dataframe["adx"] > 25, "trend",
np.where(dataframe["adx"] < 20, "oscillation", "neutral")
)
```
#### 🛠️ populate_exit_trend 改进:
```python
def populate_exit_trend(self, dataframe: DataFrame, metadata: Dict) -> DataFrame:
pair = metadata['pair']
dataframe['exit_signal'] = 0
# 根据市场状态调整 exit 阈值
trend_condition = (dataframe["&-s_close"] < 0.005) & (dataframe["%-%-rsi-14"] > 70)
oscillation_condition = (dataframe["&-s_close"] < 0.01) & (dataframe["%-%-rsi-14"] > 65)
dataframe.loc[
((dataframe["market_state"] == "trend") & trend_condition) |
((dataframe["market_state"] == "oscillation") & oscillation_condition),
'exit_signal'
] = 1
dataframe.loc[dataframe['exit_signal'] == 1, 'exit_long'] = 1
return dataframe
```
---
### ✅ 3. 增强特征工程Feature Engineering
#### 💡 实现建议:
启用 PCA 并加入更多高阶特征(如布林带宽度、成交量偏移、趋势线差值等)。
```python
# 在 freqai_config 中启用 PCA
"feature_parameters": {
"include_timeframes": ["5m", "15m", "1h"],
"include_corr_pairlist": ["BTC/USDT", "ETH/USDT"],
"label_period_candles": 12,
"include_shifted_candles": 2,
"principal_component_analysis": True,
"DI_threshold": 0.5,
"weight_factor": 0.9
}
```
#### 新增特征示例:
```python
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int, metadata: Dict, **kwargs) -> DataFrame:
# 布林带宽度
upper, middle, lower = ta.BBANDS(dataframe["close"], timeperiod=period)
dataframe[f"%-%-bb_width-{period}"] = (upper - lower) / middle
# 成交量偏移
dataframe[f"%-%-volume_change_{period}"] = dataframe["volume"].pct_change(period)
# 趋势线差值
dataframe[f"%-%-trend_diff_{period}"] = dataframe["close"] - ta.SMA(dataframe["close"], timeperiod=period)
return dataframe
```
---
### ✅ 4. 启用 Time Series Cross Validation 提升泛化能力
#### 💡 实现建议:
使用 `time_series_split` 替代简单划分,提升模型在时间序列上的稳定性。
```json
{
"data_split_parameters": {
"test_size": 0.2,
"shuffle": false,
"stratify": false,
"time_series_split": true,
"n_splits": 5
}
}
```
---
### ✅ 5. 加入模型预测置信度过滤
#### 💡 实现建议:
利用模型输出的 `pred_upper``pred_lower` 过滤低置信度信号。
```python
def populate_entry_trend(self, dataframe: DataFrame, metadata: Dict) -> DataFrame:
dataframe.loc[
(
(dataframe["&-s_close"] > 0.01) &
(dataframe["do_predict"] == 1) &
(dataframe["%-%-rsi-14"] < dataframe["&-buy_rsi_pred"]) &
(dataframe["pred_upper"] - dataframe["pred_lower"] > 0.02) # 置信区间大于 2%
),
"enter_long"
] = 1
return dataframe
```
---
## 📦 推荐修改文件结构
```bash
freqtrade/
├── templates/
│ └── OKXRegressionStrategy.py # 主策略文件
├── user_data/
│ └── models/
│ └── test175/ # 存放模型缓存
└── config_examples/
└── config_freqai.okx.json # 启用 PCA、TS CV 等配置
```
---
## 📝 总结
| 问题 | 解决方案 |
|------|----------|
| Exit Signal 不稳定 | 引入 Market State + 分级条件 |
| 模型泛化能力弱 | 启用 PCA + TimeSeriesSplit |
| 特征维度低 | 添加 BB Width、Volume Change、Trend Diff |
| 固定止损不灵活 | 动态 ATR Multiplier |
| 低质量信号多 | 加入 pred_upper/pred_lower 区间过滤 |