7.4 KiB
7.4 KiB
- Datetime: 2025-05-05 17:27:07
- Model: _qwen3/qwen-plus-latest
- Selected files:
- chat/report.md
- chat/report2.md
- freqtrade/templates/OKXRegressionStrategy.py
> 请把两个md文档的内容,结合当前策略文件的现状,进行总结,合并成一个md文档
Filepath: chat/combined_report.md
Replace lines: 1-0
```markdown
# 📈 Freqtrade AI 策略优化报告:OKXRegressionStrategy
## 📅 日期
- Datetime: 2025-05-05 10:06:53
- Model: _qwen3/qwen-plus-latest
📁 分析文件
✅ 已选文件
result/backtest-result-2025-05-04_18-41-05.jsonresult/backtest-result-2025-05-04_18-41-05.meta.jsonresult/backtest-result-2025-05-04_18-41-05_OKXRegressionStrategy.pyresult/backtest-result-2025-05-04_18-41-05_config.jsonresult/output_filted.log
📄 当前策略文件
freqtrade/templates/OKXRegressionStrategy.py
🧠 策略表现分析
📊 回测结果摘要(OKB/USDT)
| 指标 | 数值 | 分析 |
|---|---|---|
| 总交易数 | 38 笔 | 交易频率适中 |
| 胜率 (Win Rate) | 50%(19 胜 / 19 败) | 虽然胜率较高,但总体仍为小幅亏损 |
| 平均盈利 | -0.16% | 即使在赢的情况下,盈利幅度也小于亏损 |
| 总亏损 | -1.225 USDT | 表明盈亏比失衡 |
| 最大回撤 (Max Drawdown) | -2.52 USDT(占账户的 0.25%) | 回撤过大说明模型对趋势反转反应迟钝 |
🔍 关键问题总结
| 问题 | 影响 | 建议 |
|---|---|---|
| 胜率虽为 50%,但总体仍亏损 | 盈亏比失衡 | 引入动态 ROI 或强化止盈逻辑 |
| 最大回撤过高 | 资金曲线不稳定 | 加强回调止损逻辑(如 Chandelier Exit) |
| 单一退出方式(exit_signal) | 无法及时止损 | 恢复并优化 trailing stop loss |
| 固定 ATR multiplier | 不适应不同波动率 | 使用波动率百分位动态调整 |
| 无交叉验证 | 模型稳定性未知 | 加入 CV 验证防止过拟合 |
🛠️ 策略优化建议与实现
✅ 1. 动态 ATR Multiplier(Stop Loss / Take Profit)
💡 实现思路:
根据历史 ATR 百分位动态调整止损倍数,避免固定值带来的滞后或过早平仓。
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, profit_percent: float,
after_fill: bool, **kwargs) -> Optional[float]:
if trade.enter_tag != 'long':
return None
dataframe = self.dp.get_pair_dataframe(pair, timeframe=self.timeframe)
atr_col = 'ATR_14'
if atr_col not in dataframe.columns:
dataframe[atr_col] = ta.ATR(dataframe['high'], dataframe['low'], dataframe['close'], timeperiod=14)
latest_row = dataframe.iloc[-1]
historical_atr = dataframe[atr_col].rolling(window=20).mean().dropna().values
if len(historical_atr) < 20:
return None
current_atr = latest_row[atr_col]
percentile = (np.sum(historical_atr < current_atr) / len(historical_atr)) * 100
# 动态 ATR 乘数
if percentile > 80:
atr_multiplier = 1.5 # 高波动 → 更紧止损
elif percentile < 20:
atr_multiplier = 2.5 # 低波动 → 更松止损
else:
atr_multiplier = 2.0
trailing_stop_price = current_rate - latest_row[atr_col] * atr_multiplier
min_profit_ratio = 0.005 # 至少盈利 0.5%
final_stop_price = max(trailing_stop_price, trade.open_rate * (1 + min_profit_ratio))
return final_stop_price / current_rate - 1
✅ 2. 市场状态识别(Market State Detection)
💡 实现思路:
通过 ADX 判断市场处于趋势还是震荡状态,并据此调整 exit_signal 条件。
# 在 feature_engineering_expand_all 中添加 ADX
dataframe[f"%-%-adx-{period}"] = ta.ADX(dataframe["high"], dataframe["low"], dataframe["close"], timeperiod=period)
# 在 set_freqai_targets 中设置 market_state
dataframe["market_state"] = np.where(
dataframe["adx"] > 25, "trend",
np.where(dataframe["adx"] < 20, "oscillation", "neutral")
)
🛠️ populate_exit_trend 改进:
def populate_exit_trend(self, dataframe: DataFrame, metadata: Dict) -> DataFrame:
pair = metadata['pair']
dataframe['exit_signal'] = 0
# 根据市场状态调整 exit 阈值
trend_condition = (dataframe["&-s_close"] < 0.005) & (dataframe["%-%-rsi-14"] > 70)
oscillation_condition = (dataframe["&-s_close"] < 0.01) & (dataframe["%-%-rsi-14"] > 65)
dataframe.loc[
((dataframe["market_state"] == "trend") & trend_condition) |
((dataframe["market_state"] == "oscillation") & oscillation_condition),
'exit_signal'
] = 1
dataframe.loc[dataframe['exit_signal'] == 1, 'exit_long'] = 1
return dataframe
✅ 3. 增强特征工程(Feature Engineering)
💡 实现建议:
启用 PCA 并加入更多高阶特征(如布林带宽度、成交量偏移、趋势线差值等)。
# 在 freqai_config 中启用 PCA
"feature_parameters": {
"include_timeframes": ["5m", "15m", "1h"],
"include_corr_pairlist": ["BTC/USDT", "ETH/USDT"],
"label_period_candles": 12,
"include_shifted_candles": 2,
"principal_component_analysis": True,
"DI_threshold": 0.5,
"weight_factor": 0.9
}
新增特征示例:
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int, metadata: Dict, **kwargs) -> DataFrame:
# 布林带宽度
upper, middle, lower = ta.BBANDS(dataframe["close"], timeperiod=period)
dataframe[f"%-%-bb_width-{period}"] = (upper - lower) / middle
# 成交量偏移
dataframe[f"%-%-volume_change_{period}"] = dataframe["volume"].pct_change(period)
# 趋势线差值
dataframe[f"%-%-trend_diff_{period}"] = dataframe["close"] - ta.SMA(dataframe["close"], timeperiod=period)
return dataframe
✅ 4. 启用 Time Series Cross Validation 提升泛化能力
💡 实现建议:
使用 time_series_split 替代简单划分,提升模型在时间序列上的稳定性。
{
"data_split_parameters": {
"test_size": 0.2,
"shuffle": false,
"stratify": false,
"time_series_split": true,
"n_splits": 5
}
}
✅ 5. 加入模型预测置信度过滤
💡 实现建议:
利用模型输出的 pred_upper 和 pred_lower 过滤低置信度信号。
def populate_entry_trend(self, dataframe: DataFrame, metadata: Dict) -> DataFrame:
dataframe.loc[
(
(dataframe["&-s_close"] > 0.01) &
(dataframe["do_predict"] == 1) &
(dataframe["%-%-rsi-14"] < dataframe["&-buy_rsi_pred"]) &
(dataframe["pred_upper"] - dataframe["pred_lower"] > 0.02) # 置信区间大于 2%
),
"enter_long"
] = 1
return dataframe
📦 推荐修改文件结构
freqtrade/
├── templates/
│ └── OKXRegressionStrategy.py # 主策略文件
├── user_data/
│ └── models/
│ └── test175/ # 存放模型缓存
└── config_examples/
└── config_freqai.okx.json # 启用 PCA、TS CV 等配置
📝 总结
| 问题 | 解决方案 |
|---|---|
| Exit Signal 不稳定 | 引入 Market State + 分级条件 |
| 模型泛化能力弱 | 启用 PCA + TimeSeriesSplit |
| 特征维度低 | 添加 BB Width、Volume Change、Trend Diff |
| 固定止损不灵活 | 动态 ATR Multiplier |
| 低质量信号多 | 加入 pred_upper/pred_lower 区间过滤 |