渐变衰减

This commit is contained in:
zhangkun9038@dingtalk.com 2025-03-30 02:10:52 +08:00
parent 6c64c0438b
commit f4a720cec8
4 changed files with 1582 additions and 2782 deletions

View File

@ -6,7 +6,6 @@ import (
"fmt"
cfg "gitea.zjmud.xyz/phyer/tanya/config" // 导入你的 config 包
"io"
"math"
"net/http"
"strconv"
"strings"
@ -24,45 +23,57 @@ type DefaultRetentionCalculator struct {
MinRetention int
}
// NonLinearCoolingModel 非线性冷却模型
var periodBaseConfig = map[string]struct {
Base int // 基础值
Interval float64 // 时间间隔系数
}{
"1m": {30, 1.0},
"3m": {45, 1.5},
"5m": {60, 2.0},
"15m": {90, 3.0},
"30m": {120, 4.0},
"1H": {150, 5.0},
"2H": {180, 6.0},
"4H": {240, 8.0},
"6H": {300, 10.0},
"12H": {360, 12.0},
"1D": {480, 16.0},
"2D": {600, 20.0},
"5D": {720, 24.0},
"1W": {840, 28.0},
}
func NonLinearCoolingModel(daysDiff int, period string, config map[string]float64) (int, int, int) {
minutes := periodToMinutes(period)
// 可配置的系数
timeDecayFactor := config["timeDecayFactor"] // 距今时间因子
// periodGranularityFactor := config["periodGranularityFactor"] // 时间框架粒度因子
// warmPhaseMultiplier := config["warmPhaseMultiplier"] // warm阶段乘数
// coldPhaseMultiplier := config["coldPhaseMultiplier"] // cold阶段乘数
// deletePhaseMultiplier := config["deletePhaseMultiplier"] // delete阶段乘数
// 时间衰减因子反转:越新的数据保留越久
timeFactor := math.Pow(100.0, timeDecayFactor) / math.Pow(float64(daysDiff+1), timeDecayFactor)
if timeFactor > 1 {
timeFactor = 1
// 获取基础配置
cfg, ok := periodBaseConfig[period]
if !ok {
cfg = periodBaseConfig["1m"] // 默认配置
}
// 时间框架因子调整:粒度越细保留时间越长
periodFactor := math.Pow(float64(minutes)/1440, 0.5) // 基于天数的平方根比例
// 反转时间衰减因子:数据越新,保留时间越长
// 使用反比例函数1/(x+1) 确保新数据(小daysDiff)获得更大值
ageFactor := 1.0 / (float64(daysDiff)/365.0 + 1.0)
// 基础保留天数计算(与时间框架成正比
baseDays := int(30 * periodFactor) // 30天基础值
// 计算基础保留时间(与时间框架相关)
base := cfg.Base
// 阶段持续时间计算(与距今时间成反比)
warmDays := baseDays + int(float64(1000)/float64(daysDiff+1))
coldDays := 2*baseDays + int(float64(2000)/float64(daysDiff+1))
deleteDays := 3*baseDays + int(float64(3000)/float64(daysDiff+1))
// 应用年龄因子 - 新数据获得更长保留时间
warm := int(float64(base) * (1.0 + ageFactor))
cold := warm * 2
delete := warm * 3
// 保证最小阶段关系
if warmDays < baseDays {
warmDays = baseDays
// 确保最小值
if warm < cfg.Base {
warm = cfg.Base
}
if coldDays < 2*baseDays {
coldDays = 2 * baseDays
if cold < warm*2 {
cold = warm * 2
}
if deleteDays < 3*baseDays {
deleteDays = 3 * baseDays
if delete < warm*3 {
delete = warm * 3
}
return warmDays, coldDays, deleteDays
return warm, cold, delete
}
// Calculate 使用非线性冷却模型计算保留时间

View File

@ -1,14 +1,14 @@
package elasticilm
import (
"encoding/json"
"fmt"
"strings"
// "math"
"testing"
"time"
)
// TestEnsureILMPolicy 测试 ensureILMPolicy 函数并生成退化阶段时间矩阵
// TestEnsureILMPolicy 测试 ensureILMPolicy 函数并生成warm阶段时间矩阵(CSV格式)
func TestEnsureILMPolicy(t *testing.T) {
// 定义时间框架
timeFrames := []string{"1m", "3m", "5m", "15m", "30m", "1H", "2H", "4H", "6H", "12H", "1D", "2D", "5D", "1W"}
@ -18,52 +18,73 @@ func TestEnsureILMPolicy(t *testing.T) {
endDate := time.Date(2025, 3, 1, 0, 0, 0, 0, time.UTC)
currentDate := time.Date(2025, 4, 1, 0, 0, 0, 0, time.UTC)
// 初始化结果矩阵
results := make([][]string, 0)
// 初始化HTML输出
var htmlOutput strings.Builder
htmlOutput.WriteString(`<!DOCTYPE html>
<html>
<head>
<title>ILM Warm Phase Matrix</title>
<style>
body { font-family: Arial, sans-serif; }
table { border-collapse: collapse; margin: 20px; }
th, td { border: 1px solid #ddd; padding: 8px; text-align: center; }
th { background-color: #f2f2f2; }
.month { font-weight: bold; }
</style>
</head>
<body>
<h1>ILM Warm Phase Duration Matrix</h1>
<table>
<tr>
<th>Month</th>`)
// 遍历每个时间框架
// 写入表头
for _, period := range timeFrames {
row := make([]string, 0)
// 遍历每个月
for d := startDate; !d.After(endDate); d = d.AddDate(0, 1, 0) {
daysDiff := int(currentDate.Sub(d).Hours() / 24)
htmlOutput.WriteString(fmt.Sprintf(`<th>%s</th>`, period))
}
htmlOutput.WriteString(`</tr>`)
// 遍历每个月
for d := startDate; !d.After(endDate); d = d.AddDate(0, 1, 0) {
month := d.Format("2006-01")
daysDiff := int(currentDate.Sub(d).Hours() / 24)
htmlOutput.WriteString(`<tr><td class="month">` + month + `</td>`)
// 遍历每个时间框架
for _, period := range timeFrames {
// 默认配置
config := map[string]float64{
"timeDecayFactor": 0.5,
"periodGranularityFactor": 0.5,
"timeDecayFactor": 0.3,
"periodGranularityFactor": 0.7,
"warmPhaseMultiplier": 1.0,
"coldPhaseMultiplier": 2.0,
"deletePhaseMultiplier": 3.0,
}
// 使用非线性冷却模型计算各个阶段的时间
warmDays, coldDays, deleteDays := NonLinearCoolingModel(daysDiff, period, config)
// 计算warm阶段时间
warmDays, _, _ := NonLinearCoolingModel(daysDiff, period, config)
// 格式化结果
result := fmt.Sprintf("Warm: %d, Cold: %d, Delete: %d", warmDays, coldDays, deleteDays)
row = append(row, result)
// 计算颜色 (0-255范围) 基于0-1800的范围
colorValue := int(float64(warmDays) / 2500 * 255)
if colorValue > 255 {
colorValue = 255
}
bgColor := fmt.Sprintf("rgb(%d, 0, %d)", colorValue, 255-colorValue)
htmlOutput.WriteString(fmt.Sprintf(
`<td style="background-color: %s">%d</td>`,
bgColor,
warmDays,
))
}
results = append(results, row)
htmlOutput.WriteString(`</tr>`)
}
// 将结果存储为结构化数据
resultMap := make(map[string][]map[string]string)
for i, period := range timeFrames {
periodResults := make([]map[string]string, 0)
for j, result := range results[i] {
month := startDate.AddDate(0, j, 0).Format("2006-01")
periodResults = append(periodResults, map[string]string{"Month": month, "Result": result})
}
resultMap[period] = periodResults
}
htmlOutput.WriteString(`</table>
</body>
</html>`)
// 将结果编码为JSON格式
jsonData, err := json.MarshalIndent(resultMap, "", " ")
if err != nil {
t.Fatalf("Failed to encode results to JSON: %v", err)
}
// 打印JSON结果
fmt.Println(string(jsonData))
// 打印HTML结果
fmt.Println(htmlOutput.String())
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff