myTestFreqAI/freqtrade/templates/FreqaiExampleHybridStrategy.py
2025-04-22 15:43:04 +08:00

312 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import logging
import numpy as np # noqa
import pandas as pd # noqa
import talib.abstract as ta
from pandas import DataFrame
from technical import qtpylib
from freqtrade.strategy import IntParameter, IStrategy, merge_informative_pair # noqa
logger = logging.getLogger(__name__)
class FreqaiExampleHybridStrategy(IStrategy):
"""
Example of a hybrid FreqAI strat, designed to illustrate how a user may employ
FreqAI to bolster a typical Freqtrade strategy.
Launching this strategy would be:
freqtrade trade --strategy FreqaiExampleHybridStrategy --strategy-path freqtrade/templates
--freqaimodel CatboostClassifier --config config_examples/config_freqai.example.json
or the user simply adds this to their config:
"freqai": {
"enabled": true,
"purge_old_models": 2,
"train_period_days": 15,
"identifier": "unique-id",
"feature_parameters": {
"include_timeframes": [
"3m",
"15m",
"1h"
],
"include_corr_pairlist": [
"BTC/USDT",
"ETH/USDT"
],
"label_period_candles": 20,
"include_shifted_candles": 2,
"DI_threshold": 0.9,
"weight_factor": 0.9,
"principal_component_analysis": false,
"use_SVM_to_remove_outliers": true,
"indicator_periods_candles": [10, 20]
},
"data_split_parameters": {
"test_size": 0,
"random_state": 1
},
"model_training_parameters": {
"n_estimators": 800
}
},
Thanks to @smarmau and @johanvulgt for developing and sharing the strategy.
"""
minimal_roi = {
# "120": 0.0, # exit after 120 minutes at break even
"60": 0.01,
"30": 0.02,
"0": 0.04,
}
plot_config = {
"main_plot": {
"tema": {},
},
"subplots": {
"MACD": {
"macd": {"color": "blue"},
"macdsignal": {"color": "orange"},
},
"RSI": {
"rsi": {"color": "red"},
},
"Up_or_down": {
"&s-up_or_down": {"color": "green"},
},
},
}
process_only_new_candles = True
stoploss = -0.05
use_exit_signal = True
startup_candle_count: int = 30
can_short = False
# Hyperoptable parameters
buy_rsi = IntParameter(low=1, high=50, default=30, space="buy", optimize=True, load=True)
sell_rsi = IntParameter(low=50, high=100, default=70, space="sell", optimize=True, load=True)
def feature_engineering_expand_all(
self, dataframe: DataFrame, period: int, metadata: dict, **kwargs
) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
`include_corr_pairs`. In other words, a single feature defined in this function
will automatically expand to a total of
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
`include_corr_pairs` numbers of features added to the model.
All features must be prepended with `%` to be recognized by FreqAI internals.
More details on how these config defined parameters accelerate feature engineering
in the documentation at:
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param dataframe: strategy dataframe which will receive the features
:param period: period of the indicator - usage example:
:param metadata: metadata of current pair
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
"""
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(dataframe), window=period, stds=2.2
)
dataframe["bb_lowerband-period"] = bollinger["lower"]
dataframe["bb_middleband-period"] = bollinger["mid"]
dataframe["bb_upperband-period"] = bollinger["upper"]
dataframe["%-bb_width-period"] = (
dataframe["bb_upperband-period"] - dataframe["bb_lowerband-period"]
) / dataframe["bb_middleband-period"]
dataframe["%-close-bb_lower-period"] = dataframe["close"] / dataframe["bb_lowerband-period"]
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
dataframe["%-relative_volume-period"] = (
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
)
return dataframe
def feature_engineering_expand_basic(
self, dataframe: DataFrame, metadata: dict, **kwargs
) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
In other words, a single feature defined in this function
will automatically expand to a total of
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
numbers of features added to the model.
Features defined here will *not* be automatically duplicated on user defined
`indicator_periods_candles`
All features must be prepended with `%` to be recognized by FreqAI internals.
More details on how these config defined parameters accelerate feature engineering
in the documentation at:
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param dataframe: strategy dataframe which will receive the features
:param metadata: metadata of current pair
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
"""
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
def feature_engineering_standard(
self, dataframe: DataFrame, metadata: dict, **kwargs
) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
This optional function will be called once with the dataframe of the base timeframe.
This is the final function to be called, which means that the dataframe entering this
function will contain all the features and columns created by all other
freqai_feature_engineering_* functions.
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
This function is a good place for any feature that should not be auto-expanded upon
(e.g. day of the week).
All features must be prepended with `%` to be recognized by FreqAI internals.
More details about feature engineering available:
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param dataframe: strategy dataframe which will receive the features
:param metadata: metadata of current pair
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
"""
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
return dataframe
def set_freqai_targets(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
logger.info(f"Setting FreqAI targets for pair: {metadata['pair']}")
logger.info(f"DataFrame shape: {dataframe.shape}")
logger.info(f"Available columns: {list(dataframe.columns)}")
logger.info(f"First few rows:\n{dataframe[['date', 'close']].head().to_string()}")
if "close" not in dataframe.columns:
logger.error("Required 'close' column missing in dataframe")
raise ValueError("Required 'close' column missing in dataframe")
if len(dataframe) < 50:
logger.error(f"Insufficient data: {len(dataframe)} rows, need at least 50 for shift(-50)")
raise ValueError("Insufficient data for target calculation")
try:
# 生成数值型标签1 表示上涨0 表示下跌
dataframe["&-up_or_down"] = np.where(
dataframe["close"].shift(-50) > dataframe["close"],
1.0, # 数值型标签
0.0
)
except Exception as e:
logger.error(f"Failed to create &-up_or_down column: {str(e)}")
raise
logger.info(f"Target column head:\n{dataframe[['&-up_or_down']].head().to_string()}")
if "&-up_or_down" not in dataframe.columns:
logger.error("FreqAI failed to generate the &-up_or_down column")
raise KeyError("FreqAI failed to generate the &-up_or_down column")
logger.info("FreqAI targets set successfully")
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
logger.info(f"Processing pair: {metadata['pair']}")
logger.info(f"Input DataFrame shape: {dataframe.shape}")
logger.info(f"Input DataFrame columns: {list(dataframe.columns)}")
logger.info(f"Input DataFrame head:\n{dataframe[['date', 'close', 'volume']].head().to_string()}")
# Ensure FreqAI processing
logger.info("Calling self.freqai.start")
try:
dataframe = self.freqai.start(dataframe, metadata, self)
except Exception as e:
logger.error(f"self.freqai.start failed: {str(e)}")
raise
logger.info("self.freqai.start completed")
logger.info(f"Output DataFrame shape: {dataframe.shape}")
logger.info(f"Output DataFrame columns: {list(dataframe.columns)}")
# Safely log columns that exist
available_columns = [col for col in ['date', 'close', '&-up_or_down'] if col in dataframe.columns]
logger.info(f"Output DataFrame head:\n{dataframe[available_columns].head().to_string()}")
if "&-up_or_down" not in dataframe.columns:
logger.error("FreqAI did not generate the required &-up_or_down column")
raise KeyError("FreqAI did not generate the required &-up_or_down column")
# RSI
dataframe["rsi"] = ta.RSI(dataframe)
# Bollinger Bands
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe["bb_lowerband"] = bollinger["lower"]
dataframe["bb_middleband"] = bollinger["mid"]
dataframe["bb_upperband"] = bollinger["upper"]
dataframe["bb_percent"] = (dataframe["close"] - dataframe["bb_lowerband"]) / (
dataframe["bb_upperband"] - dataframe["bb_lowerband"]
)
dataframe["bb_width"] = (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe[
"bb_middleband"
]
# TEMA
dataframe["tema"] = ta.TEMA(dataframe, timeperiod=9)
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
df.loc[
(
(qtpylib.crossed_above(df["rsi"], self.buy_rsi.value))
& (df["tema"] <= df["bb_middleband"])
& (df["tema"] > df["tema"].shift(1))
& (df["volume"] > 0)
),
"enter_long",
] = 1
return df
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
df.loc[
(
(qtpylib.crossed_above(df["rsi"], self.sell_rsi.value))
& (df["tema"] > df["bb_middleband"])
& (df["tema"] < df["tema"].shift(1))
& (df["volume"] > 0)
),
"exit_long",
] = 1
return df