Some checks are pending
Update Docker Hub Description / dockerHubDescription (push) Waiting to run
337 lines
16 KiB
Python
337 lines
16 KiB
Python
import logging
|
||
import numpy as np
|
||
from functools import reduce
|
||
import talib.abstract as ta
|
||
from pandas import DataFrame
|
||
from technical import qtpylib
|
||
from freqtrade.strategy import IStrategy, IntParameter, DecimalParameter
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
class FreqaiExampleStrategy(IStrategy):
|
||
# 移除硬编码的 minimal_roi 和 stoploss,改为动态适配
|
||
minimal_roi = {} # 将在 populate_indicators 中动态生成
|
||
stoploss = 0.0 # 将在 populate_indicators 中动态设置
|
||
trailing_stop = True
|
||
process_only_new_candles = True
|
||
use_exit_signal = True
|
||
startup_candle_count: int = 40
|
||
can_short = False
|
||
|
||
# 参数定义:FreqAI 动态适配 buy_rsi 和 sell_rsi,禁用 Hyperopt 优化
|
||
buy_rsi = IntParameter(low=10, high=50, default=27, space="buy", optimize=False, load=True)
|
||
sell_rsi = IntParameter(low=50, high=90, default=59, space="sell", optimize=False, load=True)
|
||
|
||
# 为 Hyperopt 优化添加 ROI 和 stoploss 参数
|
||
roi_0 = DecimalParameter(low=0.01, high=0.2, default=0.038, space="roi", optimize=True, load=True)
|
||
roi_15 = DecimalParameter(low=0.005, high=0.1, default=0.027, space="roi", optimize=True, load=True)
|
||
roi_30 = DecimalParameter(low=0.001, high=0.05, default=0.009, space="roi", optimize=True, load=True)
|
||
stoploss_param = DecimalParameter(low=-0.35, high=-0.1, default=-0.182, space="stoploss", optimize=True, load=True)
|
||
|
||
# FreqAI 配置
|
||
freqai_info = {
|
||
"model": "CatboostClassifier", # 与config保持一致
|
||
"feature_parameters": {
|
||
"include_timeframes": ["3m", "15m", "1h"], # 与config一致
|
||
"include_corr_pairlist": ["BTC/USDT", "SOL/USDT"], # 添加相关交易对
|
||
"label_period_candles": 20, # 与config一致
|
||
"include_shifted_candles": 2, # 与config一致
|
||
},
|
||
"data_split_parameters": {
|
||
"test_size": 0.2,
|
||
"shuffle": True, # 启用shuffle
|
||
},
|
||
"model_training_parameters": {
|
||
"n_estimators": 100, # 减少树的数量
|
||
"learning_rate": 0.1, # 提高学习率
|
||
"max_depth": 6, # 限制树深度
|
||
"subsample": 0.8, # 添加子采样
|
||
"colsample_bytree": 0.8, # 添加特征采样
|
||
"objective": "reg:squarederror",
|
||
"eval_metric": "rmse",
|
||
"early_stopping_rounds": 20,
|
||
"verbose": 0,
|
||
},
|
||
"data_kitchen": {
|
||
"feature_parameters": {
|
||
"DI_threshold": 1.5, # 降低异常值过滤阈值
|
||
"use_DBSCAN_to_remove_outliers": False # 禁用DBSCAN
|
||
}
|
||
}
|
||
}
|
||
|
||
plot_config = {
|
||
"main_plot": {},
|
||
"subplots": {
|
||
"&-buy_rsi": {"&-buy_rsi": {"color": "green"}},
|
||
"&-sell_rsi": {"&-sell_rsi": {"color": "red"}},
|
||
"&-stoploss": {"&-stoploss": {"color": "purple"}},
|
||
"&-roi_0": {"&-roi_0": {"color": "orange"}},
|
||
"do_predict": {"do_predict": {"color": "brown"}},
|
||
},
|
||
}
|
||
|
||
def featcaure_engineering_expand_all(self, dataframe: DataFrame, period: int, metadata: dict, **kwargs) -> DataFrame:
|
||
# 保留关键的技术指标
|
||
dataframe["rsi"] = ta.RSI(dataframe, timeperiod=14)
|
||
|
||
# 确保 MACD 列被正确计算并保留
|
||
try:
|
||
macd = ta.MACD(dataframe, fastperiod=12, slowperiod=26, signalperiod=9)
|
||
dataframe["macd"] = macd["macd"]
|
||
dataframe["macdsignal"] = macd["macdsignal"]
|
||
except Exception as e:
|
||
logger.error(f"计算 MACD 列时出错:{str(e)}")
|
||
dataframe["macd"] = np.nan
|
||
dataframe["macdsignal"] = np.nan
|
||
|
||
# 检查 MACD 列是否存在
|
||
if "macd" not in dataframe.columns or "macdsignal" not in dataframe.columns:
|
||
logger.error("MACD 或 MACD 信号列缺失,无法生成买入信号")
|
||
raise ValueError("DataFrame 缺少必要的 MACD 列")
|
||
|
||
# 确保 MACD 列存在
|
||
if "macd" not in dataframe.columns or "macdsignal" not in dataframe.columns:
|
||
logger.error("MACD 或 MACD 信号列缺失,无法生成买入信号")
|
||
raise ValueError("DataFrame 缺少必要的 MACD 列")
|
||
|
||
# 保留布林带相关特征
|
||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||
dataframe["bb_lowerband"] = bollinger["lower"]
|
||
dataframe["bb_middleband"] = bollinger["mid"]
|
||
dataframe["bb_upperband"] = bollinger["upper"]
|
||
|
||
# 保留成交量相关特征
|
||
dataframe["volume_ma"] = dataframe["volume"].rolling(window=20).mean()
|
||
|
||
# 数据清理
|
||
for col in dataframe.columns:
|
||
if dataframe[col].dtype in ["float64", "int64"]:
|
||
dataframe[col] = dataframe[col].replace([np.inf, -np.inf], np.nan)
|
||
dataframe[col] = dataframe[col].ffill().fillna(0)
|
||
|
||
logger.info(f"特征工程完成,特征数量:{len(dataframe.columns)}")
|
||
return dataframe
|
||
|
||
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||
dataframe["%-raw_volume"] = dataframe["volume"]
|
||
dataframe["%-raw_price"] = dataframe["close"]
|
||
# 数据清理逻辑
|
||
for col in dataframe.columns:
|
||
if dataframe[col].dtype in ["float64", "int64"]:
|
||
dataframe[col] = dataframe[col].replace([np.inf, -np.inf], 0)
|
||
dataframe[col] = dataframe[col].ffill()
|
||
dataframe[col] = dataframe[col].fillna(0)
|
||
|
||
# 检查是否仍有无效值
|
||
if dataframe[col].isna().any() or np.isinf(dataframe[col]).any():
|
||
logger.warning(f"列 {col} 仍包含无效值,已填充为默认值")
|
||
dataframe[col] = dataframe[col].fillna(0)
|
||
return dataframe
|
||
|
||
def feature_engineering_standard(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
|
||
dataframe.ffill(inplace=True)
|
||
dataframe.fillna(0, inplace=True)
|
||
return dataframe
|
||
|
||
def set_freqai_targets(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||
logger.info(f"设置 FreqAI 目标,交易对:{metadata['pair']}")
|
||
if "close" not in dataframe.columns:
|
||
logger.error("数据框缺少必要的 'close' 列")
|
||
raise ValueError("数据框缺少必要的 'close' 列")
|
||
|
||
try:
|
||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
||
|
||
# 定义目标变量为未来价格变化百分比(连续值)
|
||
dataframe["up_or_down"] = (
|
||
dataframe["close"].shift(-label_period) - dataframe["close"]
|
||
) / dataframe["close"]
|
||
|
||
# 数据清理:处理 NaN 和 Inf 值
|
||
dataframe["up_or_down"] = dataframe["up_or_down"].replace([np.inf, -np.inf], np.nan)
|
||
dataframe["up_or_down"] = dataframe["up_or_down"].ffill().fillna(0)
|
||
|
||
# 确保目标变量是二维数组
|
||
if dataframe["up_or_down"].ndim == 1:
|
||
dataframe["up_or_down"] = dataframe["up_or_down"].values.reshape(-1, 1)
|
||
|
||
# 检查并处理 NaN 或无限值
|
||
dataframe["up_or_down"] = dataframe["up_or_down"].replace([np.inf, -np.inf], np.nan)
|
||
dataframe["up_or_down"] = dataframe["up_or_down"].ffill().fillna(0)
|
||
|
||
# 生成 %-volatility 特征
|
||
dataframe["%-volatility"] = dataframe["close"].pct_change().rolling(20).std()
|
||
|
||
# 确保 &-buy_rsi 列的值计算正确
|
||
dataframe["&-buy_rsi"] = ta.RSI(dataframe, timeperiod=14)
|
||
|
||
# 数据清理
|
||
for col in ["&-buy_rsi", "up_or_down", "%-volatility"]:
|
||
# 使用直接操作避免链式赋值
|
||
dataframe[col] = dataframe[col].replace([np.inf, -np.inf], np.nan)
|
||
dataframe[col] = dataframe[col].ffill() # 替代 fillna(method='ffill')
|
||
dataframe[col] = dataframe[col].fillna(dataframe[col].mean()) # 使用均值填充 NaN 值
|
||
if dataframe[col].isna().any():
|
||
logger.warning(f"目标列 {col} 仍包含 NaN,填充为默认值")
|
||
|
||
except Exception as e:
|
||
logger.error(f"创建 FreqAI 目标失败:{str(e)}")
|
||
raise
|
||
|
||
# Log the shape of the target variable for debugging
|
||
logger.info(f"目标列形状:{dataframe['up_or_down'].shape}")
|
||
logger.info(f"目标列预览:\n{dataframe[['up_or_down', '&-buy_rsi']].head().to_string()}")
|
||
return dataframe
|
||
|
||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||
logger.info(f"处理交易对:{metadata['pair']}")
|
||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||
|
||
# 计算传统指标
|
||
dataframe["rsi"] = ta.RSI(dataframe, timeperiod=14)
|
||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||
dataframe["bb_lowerband"] = bollinger["lower"]
|
||
dataframe["bb_middleband"] = bollinger["mid"]
|
||
dataframe["bb_upperband"] = bollinger["upper"]
|
||
dataframe["tema"] = ta.TEMA(dataframe, timeperiod=9)
|
||
|
||
# 生成 up_or_down 信号(非 FreqAI 目标)
|
||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
||
# 使用未来价格变化方向生成 up_or_down 信号
|
||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
||
dataframe["up_or_down"] = np.where(
|
||
dataframe["close"].shift(-label_period) > dataframe["close"], 1, 0
|
||
)
|
||
|
||
# 动态设置参数
|
||
if "&-buy_rsi" in dataframe.columns:
|
||
# 派生其他目标
|
||
dataframe["&-sell_rsi"] = dataframe["&-buy_rsi"] + 30
|
||
dataframe["%-volatility"] = dataframe["close"].pct_change().rolling(20).std()
|
||
# Ensure proper calculation and handle potential NaN values
|
||
dataframe["&-stoploss"] = (-0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)).fillna(-0.1)
|
||
dataframe["&-roi_0"] = ((dataframe["close"] / dataframe["close"].shift(label_period) - 1).clip(0, 0.2)).fillna(0)
|
||
|
||
# Additional check to ensure no NaN values remain
|
||
for col in ["&-stoploss", "&-roi_0"]:
|
||
if dataframe[col].isna().any():
|
||
logger.warning(f"列 {col} 仍包含 NaN,填充为默认值")
|
||
dataframe[col] = dataframe[col].fillna(-0.1 if col == "&-stoploss" else 0)
|
||
|
||
# 简化动态参数生成逻辑
|
||
# 放松 buy_rsi 和 sell_rsi 的生成逻辑
|
||
# 计算 buy_rsi_pred 并清理 NaN 值
|
||
dataframe["buy_rsi_pred"] = dataframe["rsi"].rolling(window=10).mean().clip(30, 50)
|
||
dataframe["buy_rsi_pred"] = dataframe["buy_rsi_pred"].fillna(dataframe["buy_rsi_pred"].median())
|
||
|
||
# 计算 sell_rsi_pred 并清理 NaN 值
|
||
dataframe["sell_rsi_pred"] = dataframe["buy_rsi_pred"] + 20
|
||
dataframe["sell_rsi_pred"] = dataframe["sell_rsi_pred"].fillna(dataframe["sell_rsi_pred"].median())
|
||
|
||
# 计算 stoploss_pred 并清理 NaN 值
|
||
dataframe["stoploss_pred"] = -0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)
|
||
dataframe["stoploss_pred"] = dataframe["stoploss_pred"].fillna(dataframe["stoploss_pred"].mean())
|
||
|
||
# 计算 roi_0_pred 并清理 NaN 值
|
||
dataframe["roi_0_pred"] = dataframe["&-roi_0"].clip(0.01, 0.2)
|
||
dataframe["roi_0_pred"] = dataframe["roi_0_pred"].fillna(dataframe["roi_0_pred"].mean())
|
||
|
||
# 检查预测值
|
||
for col in ["buy_rsi_pred", "sell_rsi_pred", "stoploss_pred", "roi_0_pred", "&-sell_rsi", "&-stoploss", "&-roi_0"]:
|
||
if dataframe[col].isna().any():
|
||
logger.warning(f"列 {col} 包含 NaN,填充为默认值")
|
||
dataframe[col] = dataframe[col].fillna(dataframe[col].mean())
|
||
|
||
# 更保守的止损和止盈设置
|
||
dataframe["trailing_stop_positive"] = (dataframe["roi_0_pred"] * 0.3).clip(0.01, 0.2)
|
||
dataframe["trailing_stop_positive_offset"] = (dataframe["roi_0_pred"] * 0.5).clip(0.01, 0.3)
|
||
|
||
# 设置策略级参数
|
||
self.buy_rsi.value = float(dataframe["buy_rsi_pred"].iloc[-1])
|
||
self.sell_rsi.value = float(dataframe["sell_rsi_pred"].iloc[-1])
|
||
# 更保守的止损设置
|
||
self.stoploss = -0.15 # 固定止损 15%
|
||
self.minimal_roi = {
|
||
0: float(self.roi_0.value),
|
||
15: float(self.roi_15.value),
|
||
30: float(self.roi_30.value),
|
||
60: 0
|
||
}
|
||
# 更保守的追踪止损设置
|
||
self.trailing_stop_positive = 0.05 # 追踪止损触发点
|
||
self.trailing_stop_positive_offset = 0.1 # 追踪止损偏移量
|
||
|
||
logger.info(f"动态参数:buy_rsi={self.buy_rsi.value}, sell_rsi={self.sell_rsi.value}, "
|
||
f"stoploss={self.stoploss}, trailing_stop_positive={self.trailing_stop_positive}")
|
||
|
||
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
|
||
dataframe.ffill(inplace=True)
|
||
dataframe.fillna(0, inplace=True)
|
||
|
||
logger.info(f"up_or_down 值统计:\n{dataframe['up_or_down'].value_counts().to_string()}")
|
||
logger.info(f"do_predict 值统计:\n{dataframe['do_predict'].value_counts().to_string()}")
|
||
|
||
return dataframe
|
||
|
||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||
# 改进卖出信号条件
|
||
exit_long_conditions = [
|
||
(df["rsi"] > df["sell_rsi_pred"]), # RSI 高于卖出阈值
|
||
(df["volume"] > df["volume"].rolling(window=10).mean()), # 成交量高于近期均值
|
||
(df["close"] < df["bb_middleband"]) # 价格低于布林带中轨
|
||
]
|
||
if exit_long_conditions:
|
||
df.loc[
|
||
reduce(lambda x, y: x & y, exit_long_conditions),
|
||
"exit_long"
|
||
] = 1
|
||
return df
|
||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||
# 改进买入信号条件
|
||
# 检查 MACD 列是否存在
|
||
if "macd" not in df.columns or "macdsignal" not in df.columns:
|
||
logger.error("MACD 或 MACD 信号列缺失,无法生成买入信号。尝试重新计算 MACD 列。")
|
||
|
||
try:
|
||
macd = ta.MACD(df, fastperiod=12, slowperiod=26, signalperiod=9)
|
||
df["macd"] = macd["macd"]
|
||
df["macdsignal"] = macd["macdsignal"]
|
||
logger.info("MACD 列已成功重新计算。")
|
||
except Exception as e:
|
||
logger.error(f"重新计算 MACD 列时出错:{str(e)}")
|
||
raise ValueError("DataFrame 缺少必要的 MACD 列且无法重新计算。")
|
||
|
||
enter_long_conditions = [
|
||
(df["rsi"] < df["buy_rsi_pred"]), # RSI 低于买入阈值
|
||
(df["volume"] > df["volume"].rolling(window=10).mean() * 1.2), # 成交量高于近期均值20%
|
||
(df["close"] > df["bb_middleband"]) # 价格高于布林带中轨
|
||
]
|
||
|
||
# 如果 MACD 列存在,则添加 MACD 金叉条件
|
||
if "macd" in df.columns and "macdsignal" in df.columns:
|
||
enter_long_conditions.append((df["macd"] > df["macdsignal"]))
|
||
|
||
# 确保模型预测为买入
|
||
enter_long_conditions.append((df["do_predict"] == 1))
|
||
if enter_long_conditions:
|
||
df.loc[
|
||
reduce(lambda x, y: x & y, enter_long_conditions),
|
||
["enter_long", "enter_tag"]
|
||
] = (1, "long")
|
||
return df
|
||
def confirm_trade_entry(
|
||
self, pair: str, order_type: str, amount: float, rate: float,
|
||
time_in_force: str, current_time, entry_tag, side: str, **kwargs
|
||
) -> bool:
|
||
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||
last_candle = df.iloc[-1].squeeze()
|
||
if side == "long":
|
||
if rate > (last_candle["close"] * (1 + 0.0025)):
|
||
return False
|
||
return True
|