312 lines
12 KiB
Python
312 lines
12 KiB
Python
import logging
|
||
|
||
import numpy as np # noqa
|
||
import pandas as pd # noqa
|
||
import talib.abstract as ta
|
||
from pandas import DataFrame
|
||
from technical import qtpylib
|
||
|
||
from freqtrade.strategy import IntParameter, IStrategy, merge_informative_pair
|
||
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
class FreqaiExampleHybridStrategy(IStrategy):
|
||
"""
|
||
Example of a hybrid FreqAI strat, designed to illustrate how a user may employ
|
||
FreqAI to bolster a typical Freqtrade strategy.
|
||
|
||
Launching this strategy would be:
|
||
|
||
freqtrade trade --strategy FreqaiExampleHybridStrategy --strategy-path freqtrade/templates
|
||
--freqaimodel CatboostClassifier --config config_examples/config_freqai.example.json
|
||
|
||
or the user simply adds this to their config:
|
||
|
||
"freqai": {
|
||
"enabled": true,
|
||
"purge_old_models": 2,
|
||
"train_period_days": 15,
|
||
"identifier": "unique-id",
|
||
"feature_parameters": {
|
||
"include_timeframes": [
|
||
"3m",
|
||
"15m",
|
||
"1h"
|
||
],
|
||
"include_corr_pairlist": [
|
||
"BTC/USDT",
|
||
"ETH/USDT"
|
||
],
|
||
"label_period_candles": 20,
|
||
"include_shifted_candles": 2,
|
||
"DI_threshold": 0.9,
|
||
"weight_factor": 0.9,
|
||
"principal_component_analysis": false,
|
||
"use_SVM_to_remove_outliers": true,
|
||
"indicator_periods_candles": [10, 20]
|
||
},
|
||
"data_split_parameters": {
|
||
"test_size": 0,
|
||
"random_state": 1
|
||
},
|
||
"model_training_parameters": {
|
||
"n_estimators": 800
|
||
}
|
||
},
|
||
|
||
Thanks to @smarmau and @johanvulgt for developing and sharing the strategy.
|
||
"""
|
||
|
||
minimal_roi = {
|
||
# "120": 0.0, # exit after 120 minutes at break even
|
||
"60": 0.01,
|
||
"30": 0.02,
|
||
"0": 0.04,
|
||
}
|
||
|
||
plot_config = {
|
||
"main_plot": {
|
||
"tema": {},
|
||
},
|
||
"subplots": {
|
||
"MACD": {
|
||
"macd": {"color": "blue"},
|
||
"macdsignal": {"color": "orange"},
|
||
},
|
||
"RSI": {
|
||
"rsi": {"color": "red"},
|
||
},
|
||
"Up_or_down": {
|
||
"&s-up_or_down": {"color": "green"},
|
||
},
|
||
},
|
||
}
|
||
|
||
process_only_new_candles = True
|
||
stoploss = -0.05
|
||
use_exit_signal = True
|
||
startup_candle_count: int = 30
|
||
can_short = False
|
||
|
||
# Hyperoptable parameters
|
||
buy_rsi = IntParameter(low=1, high=50, default=30, space="buy", optimize=True, load=True)
|
||
sell_rsi = IntParameter(low=50, high=100, default=70, space="sell", optimize=True, load=True)
|
||
|
||
def feature_engineering_expand_all(
|
||
self, dataframe: DataFrame, period: int, metadata: dict, **kwargs
|
||
) -> DataFrame:
|
||
"""
|
||
*Only functional with FreqAI enabled strategies*
|
||
This function will automatically expand the defined features on the config defined
|
||
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
|
||
`include_corr_pairs`. In other words, a single feature defined in this function
|
||
will automatically expand to a total of
|
||
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
|
||
`include_corr_pairs` numbers of features added to the model.
|
||
|
||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||
|
||
More details on how these config defined parameters accelerate feature engineering
|
||
in the documentation at:
|
||
|
||
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
||
|
||
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
||
|
||
:param dataframe: strategy dataframe which will receive the features
|
||
:param period: period of the indicator - usage example:
|
||
:param metadata: metadata of current pair
|
||
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||
"""
|
||
|
||
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
|
||
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
|
||
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||
|
||
bollinger = qtpylib.bollinger_bands(
|
||
qtpylib.typical_price(dataframe), window=period, stds=2.2
|
||
)
|
||
dataframe["bb_lowerband-period"] = bollinger["lower"]
|
||
dataframe["bb_middleband-period"] = bollinger["mid"]
|
||
dataframe["bb_upperband-period"] = bollinger["upper"]
|
||
|
||
dataframe["%-bb_width-period"] = (
|
||
dataframe["bb_upperband-period"] - dataframe["bb_lowerband-period"]
|
||
) / dataframe["bb_middleband-period"]
|
||
dataframe["%-close-bb_lower-period"] = dataframe["close"] / dataframe["bb_lowerband-period"]
|
||
|
||
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
||
|
||
dataframe["%-relative_volume-period"] = (
|
||
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
|
||
)
|
||
|
||
return dataframe
|
||
|
||
def feature_engineering_expand_basic(
|
||
self, dataframe: DataFrame, metadata: dict, **kwargs
|
||
) -> DataFrame:
|
||
"""
|
||
*Only functional with FreqAI enabled strategies*
|
||
This function will automatically expand the defined features on the config defined
|
||
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
|
||
In other words, a single feature defined in this function
|
||
will automatically expand to a total of
|
||
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
|
||
numbers of features added to the model.
|
||
|
||
Features defined here will *not* be automatically duplicated on user defined
|
||
`indicator_periods_candles`
|
||
|
||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||
|
||
More details on how these config defined parameters accelerate feature engineering
|
||
in the documentation at:
|
||
|
||
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
||
|
||
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
||
|
||
:param dataframe: strategy dataframe which will receive the features
|
||
:param metadata: metadata of current pair
|
||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
|
||
"""
|
||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||
dataframe["%-raw_volume"] = dataframe["volume"]
|
||
dataframe["%-raw_price"] = dataframe["close"]
|
||
return dataframe
|
||
|
||
def feature_engineering_standard(
|
||
self, dataframe: DataFrame, metadata: dict, **kwargs
|
||
) -> DataFrame:
|
||
"""
|
||
*Only functional with FreqAI enabled strategies*
|
||
This optional function will be called once with the dataframe of the base timeframe.
|
||
This is the final function to be called, which means that the dataframe entering this
|
||
function will contain all the features and columns created by all other
|
||
freqai_feature_engineering_* functions.
|
||
|
||
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
|
||
This function is a good place for any feature that should not be auto-expanded upon
|
||
(e.g. day of the week).
|
||
|
||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||
|
||
More details about feature engineering available:
|
||
|
||
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||
|
||
:param dataframe: strategy dataframe which will receive the features
|
||
:param metadata: metadata of current pair
|
||
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
||
"""
|
||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||
return dataframe
|
||
def set_freqai_targets(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||
logger.info(f"Setting FreqAI targets for pair: {metadata['pair']}")
|
||
logger.info(f"DataFrame shape: {dataframe.shape}")
|
||
logger.info(f"Available columns: {list(dataframe.columns)}")
|
||
logger.info(f"First few rows:\n{dataframe[['date', 'close']].head().to_string()}")
|
||
|
||
if "close" not in dataframe.columns:
|
||
logger.error("Required 'close' column missing in dataframe")
|
||
raise ValueError("Required 'close' column missing in dataframe")
|
||
|
||
if len(dataframe) < 50:
|
||
logger.error(f"Insufficient data: {len(dataframe)} rows, need at least 50 for shift(-50)")
|
||
raise ValueError("Insufficient data for target calculation")
|
||
|
||
try:
|
||
# 生成数值型标签:1 表示上涨,0 表示下跌
|
||
dataframe["&-up_or_down"] = np.where(
|
||
dataframe["close"].shift(-50) > dataframe["close"],
|
||
1.0, # 数值型标签
|
||
0.0
|
||
)
|
||
except Exception as e:
|
||
logger.error(f"Failed to create &-up_or_down column: {str(e)}")
|
||
raise
|
||
|
||
logger.info(f"Target column head:\n{dataframe[['&-up_or_down']].head().to_string()}")
|
||
|
||
if "&-up_or_down" not in dataframe.columns:
|
||
logger.error("FreqAI failed to generate the &-up_or_down column")
|
||
raise KeyError("FreqAI failed to generate the &-up_or_down column")
|
||
|
||
logger.info("FreqAI targets set successfully")
|
||
return dataframe
|
||
|
||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||
logger.info(f"Processing pair: {metadata['pair']}")
|
||
logger.info(f"Input DataFrame shape: {dataframe.shape}")
|
||
logger.info(f"Input DataFrame columns: {list(dataframe.columns)}")
|
||
logger.info(f"Input DataFrame head:\n{dataframe[['date', 'close', 'volume']].head().to_string()}")
|
||
|
||
# Ensure FreqAI processing
|
||
logger.info("Calling self.freqai.start")
|
||
try:
|
||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||
except Exception as e:
|
||
logger.error(f"self.freqai.start failed: {str(e)}")
|
||
raise
|
||
logger.info("self.freqai.start completed")
|
||
|
||
logger.info(f"Output DataFrame shape: {dataframe.shape}")
|
||
logger.info(f"Output DataFrame columns: {list(dataframe.columns)}")
|
||
# Safely log columns that exist
|
||
available_columns = [col for col in ['date', 'close', '&-up_or_down'] if col in dataframe.columns]
|
||
logger.info(f"Output DataFrame head:\n{dataframe[available_columns].head().to_string()}")
|
||
|
||
if "&-up_or_down" not in dataframe.columns:
|
||
logger.error("FreqAI did not generate the required &-up_or_down column")
|
||
raise KeyError("FreqAI did not generate the required &-up_or_down column")
|
||
|
||
# RSI
|
||
dataframe["rsi"] = ta.RSI(dataframe)
|
||
|
||
# Bollinger Bands
|
||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||
dataframe["bb_lowerband"] = bollinger["lower"]
|
||
dataframe["bb_middleband"] = bollinger["mid"]
|
||
dataframe["bb_upperband"] = bollinger["upper"]
|
||
dataframe["bb_percent"] = (dataframe["close"] - dataframe["bb_lowerband"]) / (
|
||
dataframe["bb_upperband"] - dataframe["bb_lowerband"]
|
||
)
|
||
dataframe["bb_width"] = (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe[
|
||
"bb_middleband"
|
||
]
|
||
|
||
# TEMA
|
||
dataframe["tema"] = ta.TEMA(dataframe, timeperiod=9)
|
||
|
||
return dataframe
|
||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||
df.loc[
|
||
(
|
||
(qtpylib.crossed_above(df["rsi"], self.buy_rsi.value))
|
||
& (df["tema"] <= df["bb_middleband"])
|
||
& (df["tema"] > df["tema"].shift(1))
|
||
& (df["volume"] > 0)
|
||
),
|
||
"enter_long",
|
||
] = 1
|
||
return df
|
||
|
||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||
df.loc[
|
||
(
|
||
(qtpylib.crossed_above(df["rsi"], self.sell_rsi.value))
|
||
& (df["tema"] > df["bb_middleband"])
|
||
& (df["tema"] < df["tema"].shift(1))
|
||
& (df["volume"] > 0)
|
||
),
|
||
"exit_long",
|
||
] = 1
|
||
return df
|