156 lines
5.9 KiB
Python
156 lines
5.9 KiB
Python
from typing import Any
|
|
|
|
import numpy as np
|
|
import numpy.typing as npt
|
|
import pandas as pd
|
|
import torch
|
|
|
|
from freqtrade.freqai.base_models.BasePyTorchRegressor import BasePyTorchRegressor
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
from freqtrade.freqai.torch.PyTorchDataConvertor import (
|
|
DefaultPyTorchDataConvertor,
|
|
PyTorchDataConvertor,
|
|
)
|
|
from freqtrade.freqai.torch.PyTorchModelTrainer import PyTorchTransformerTrainer
|
|
from freqtrade.freqai.torch.PyTorchTransformerModel import PyTorchTransformerModel
|
|
|
|
|
|
class PyTorchTransformerRegressor(BasePyTorchRegressor):
|
|
"""
|
|
This class implements the fit method of IFreqaiModel.
|
|
in the fit method we initialize the model and trainer objects.
|
|
the only requirement from the model is to be aligned to PyTorchRegressor
|
|
predict method that expects the model to predict tensor of type float.
|
|
the trainer defines the training loop.
|
|
|
|
parameters are passed via `model_training_parameters` under the freqai
|
|
section in the config file. e.g:
|
|
{
|
|
...
|
|
"freqai": {
|
|
...
|
|
"conv_width": 30, // PyTorchTransformer is based on windowing
|
|
"feature_parameters": {
|
|
...
|
|
"include_shifted_candles": 0, // which removes the need for shifted candles
|
|
...
|
|
},
|
|
"model_training_parameters" : {
|
|
"learning_rate": 3e-4,
|
|
"trainer_kwargs": {
|
|
"n_steps": 5000,
|
|
"batch_size": 64,
|
|
"n_epochs": null
|
|
},
|
|
"model_kwargs": {
|
|
"hidden_dim": 512,
|
|
"dropout_percent": 0.2,
|
|
"n_layer": 1,
|
|
},
|
|
}
|
|
}
|
|
}
|
|
"""
|
|
|
|
@property
|
|
def data_convertor(self) -> PyTorchDataConvertor:
|
|
return DefaultPyTorchDataConvertor(target_tensor_type=torch.float)
|
|
|
|
def __init__(self, **kwargs) -> None:
|
|
super().__init__(**kwargs)
|
|
config = self.freqai_info.get("model_training_parameters", {})
|
|
self.learning_rate: float = config.get("learning_rate", 3e-4)
|
|
self.model_kwargs: dict[str, Any] = config.get("model_kwargs", {})
|
|
self.trainer_kwargs: dict[str, Any] = config.get("trainer_kwargs", {})
|
|
|
|
def fit(self, data_dictionary: dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
|
"""
|
|
User sets up the training and test data to fit their desired model here
|
|
:param data_dictionary: the dictionary holding all data for train, test,
|
|
labels, weights
|
|
:param dk: The datakitchen object for the current coin/model
|
|
"""
|
|
|
|
n_features = data_dictionary["train_features"].shape[-1]
|
|
n_labels = data_dictionary["train_labels"].shape[-1]
|
|
model = PyTorchTransformerModel(
|
|
input_dim=n_features,
|
|
output_dim=n_labels,
|
|
time_window=self.window_size,
|
|
**self.model_kwargs,
|
|
)
|
|
model.to(self.device)
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
|
|
criterion = torch.nn.MSELoss()
|
|
# check if continual_learning is activated, and retrieve the model to continue training
|
|
trainer = self.get_init_model(dk.pair)
|
|
if trainer is None:
|
|
trainer = PyTorchTransformerTrainer(
|
|
model=model,
|
|
optimizer=optimizer,
|
|
criterion=criterion,
|
|
device=self.device,
|
|
data_convertor=self.data_convertor,
|
|
window_size=self.window_size,
|
|
tb_logger=self.tb_logger,
|
|
**self.trainer_kwargs,
|
|
)
|
|
trainer.fit(data_dictionary, self.splits)
|
|
return trainer
|
|
|
|
def predict(
|
|
self, unfiltered_df: pd.DataFrame, dk: FreqaiDataKitchen, **kwargs
|
|
) -> tuple[pd.DataFrame, npt.NDArray[np.int_]]:
|
|
"""
|
|
Filter the prediction features data and predict with it.
|
|
:param unfiltered_df: Full dataframe for the current backtest period.
|
|
:return:
|
|
:pred_df: dataframe containing the predictions
|
|
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
|
data (NaNs) or felt uncertain about data (PCA and DI index)
|
|
"""
|
|
|
|
dk.find_features(unfiltered_df)
|
|
dk.data_dictionary["prediction_features"], _ = dk.filter_features(
|
|
unfiltered_df, dk.training_features_list, training_filter=False
|
|
)
|
|
|
|
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
|
|
dk.data_dictionary["prediction_features"], outlier_check=True
|
|
)
|
|
|
|
x = self.data_convertor.convert_x(
|
|
dk.data_dictionary["prediction_features"], device=self.device
|
|
)
|
|
# if user is asking for multiple predictions, slide the window
|
|
# along the tensor
|
|
x = x.unsqueeze(0)
|
|
# create empty torch tensor
|
|
self.model.model.eval()
|
|
yb = torch.empty(0).to(self.device)
|
|
if x.shape[1] > self.window_size:
|
|
ws = self.window_size
|
|
for i in range(0, x.shape[1] - ws):
|
|
xb = x[:, i : i + ws, :].to(self.device)
|
|
y = self.model.model(xb)
|
|
yb = torch.cat((yb, y), dim=1)
|
|
else:
|
|
yb = self.model.model(x)
|
|
|
|
yb = yb.cpu().squeeze(0)
|
|
pred_df = pd.DataFrame(yb.detach().numpy(), columns=dk.label_list)
|
|
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
|
|
|
|
if self.ft_params.get("DI_threshold", 0) > 0:
|
|
dk.DI_values = dk.feature_pipeline["di"].di_values
|
|
else:
|
|
dk.DI_values = np.zeros(outliers.shape[0])
|
|
dk.do_predict = outliers
|
|
|
|
if x.shape[1] > 1:
|
|
zeros_df = pd.DataFrame(
|
|
np.zeros((x.shape[1] - len(pred_df), len(pred_df.columns))), columns=pred_df.columns
|
|
)
|
|
pred_df = pd.concat([zeros_df, pred_df], axis=0, ignore_index=True)
|
|
return (pred_df, dk.do_predict)
|