myTestFreqAI/freqtrade/templates/freqaiprimer.py
zhangkun9038@dingtalk.com 3785332155 hyperopted
2025-09-07 23:07:37 +08:00

631 lines
31 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="pandas_ta")
import logging
from freqtrade.strategy import IStrategy, IntParameter, DecimalParameter
from pandas import DataFrame
import pandas_ta as ta
from freqtrade.persistence import Trade
import numpy as np
import datetime
logger = logging.getLogger(__name__)
class FreqaiPrimer(IStrategy):
# 策略参数 - 调整以提高单笔盈利潜力
minimal_roi = {
"0": 0.05, # 5% ROI (10 分钟内)
"60": 0.03, # 3% ROI (1 小时)
"180": 0.01, # 1% ROI (3 小时)
"360": 0.005 # 0.5% ROI (6 小时)
}
stoploss = -0.15 # 固定止损 -15% (大幅放宽止损以承受更大波动)
trailing_stop = True
trailing_stop_positive_offset = 0.005 # 追踪止损偏移量 0.5% (更容易触发跟踪止盈)
# 用于跟踪市场状态的数据框缓存
_dataframe_cache = None
def __init__(self, config=None):
"""初始化策略参数调用父类初始化方法并接受config参数"""
super().__init__(config) # 调用父类的初始化方法并传递config
# 存储从配置文件加载的默认值
self._trailing_stop_positive_default = 0.004 # 降低默认值以更容易触发跟踪止盈
@property
def protections(self):
"""
保护机制配置
基于最新Freqtrade规范保护机制应定义在策略文件中而非配置文件
"""
return [
{
"method": "StoplossGuard",
"lookback_period_candles": 60, # 3小时回看期60根3分钟K线
"trade_limit": 2, # 最多2笔止损交易
"stop_duration_candles": 60, # 暂停180分钟60根3分钟K线
"only_per_pair": False # 仅针对单个币对
},
{
"method": "CooldownPeriod",
"stop_duration_candles": 2 # 6分钟冷却期2根3分钟K线
},
{
"method": "MaxDrawdown",
"lookback_period_candles": 48, # 2.4小时回看期
"trade_limit": 4, # 4笔交易限制
"stop_duration_candles": 24, # 72分钟暂停24根3分钟K线
"max_allowed_drawdown": 0.20 # 20%最大回撤容忍度
}
]
@property
def trailing_stop_positive(self):
"""根据市场状态动态调整跟踪止盈参数"""
# 获取当前市场状态
if self._dataframe_cache is not None and len(self._dataframe_cache) > 0:
current_state = self._dataframe_cache['market_state'].iloc[-1]
if current_state == 'strong_bull':
return 0.007 # 强劲牛市中降低跟踪止盈,让利润奔跑
elif current_state == 'weak_bull':
return 0.005 # 弱势牛市中保持较低的跟踪止盈
return self._trailing_stop_positive_default # 返回默认值
@trailing_stop_positive.setter
def trailing_stop_positive(self, value):
"""设置trailing_stop_positive的默认值"""
self._trailing_stop_positive_default = value
timeframe = "3m" # 主时间框架为 3 分钟
can_short = False # 禁用做空
# 自定义指标参数 - 使用Hyperopt可优化参数
bb_length = IntParameter(10, 30, default=20, optimize=True, load=True, name='bb_length', space='buy')
bb_std = DecimalParameter(1.5, 3.0, decimals=1, default=2.0, optimize=True, load=True, name='bb_std', space='buy')
rsi_length = IntParameter(7, 21, default=14, optimize=True, load=True, name='rsi_length', space='buy')
rsi_overbought = IntParameter(50, 70, default=58, optimize=True, load=True, name='rsi_overbought', space='buy')
rsi_oversold = IntParameter(30, 50, default=42, optimize=True, load=True, name='rsi_oversold', space='buy')
# 剧烈拉升检测参数 - 使用Hyperopt可优化参数
h1_max_candles = IntParameter(100, 300, default=200, optimize=True, load=True, name='h1_max_candles', space='buy')
h1_rapid_rise_threshold = DecimalParameter(0.05, 0.15, decimals=3, default=0.11, optimize=True, load=True, name='h1_rapid_rise_threshold', space='buy')
h1_max_consecutive_candles = IntParameter(1, 4, default=2, optimize=True, load=True, name='h1_max_consecutive_candles', space='buy')
def informative_pairs(self):
pairs = self.dp.current_whitelist()
return [(pair, '15m') for pair in pairs] + [(pair, '1h') for pair in pairs]
def _validate_dataframe_columns(self, dataframe: DataFrame, required_columns: list, metadata: dict):
"""
验证数据框中是否包含所有需要的列。
如果缺少列,则记录警告日志。
"""
missing_columns = [col for col in required_columns if col not in dataframe.columns]
if missing_columns:
logger.warning(f"[{metadata['pair']}] 数据框中缺少以下列: {missing_columns}")
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# 计算 3m 周期的指标
bb_length_value = self.bb_length.value
bb_std_value = self.bb_std.value
rsi_length_value = self.rsi_length.value
bb_3m = ta.bbands(dataframe['close'], length=bb_length_value, std=bb_std_value)
dataframe['bb_lower_3m'] = bb_3m[f'BBL_{bb_length_value}_{bb_std_value}']
dataframe['bb_upper_3m'] = bb_3m[f'BBU_{bb_length_value}_{bb_std_value}']
dataframe['rsi_3m'] = ta.rsi(dataframe['close'], length=rsi_length_value)
# 新增 StochRSI 指标
stochrsi_3m = ta.stochrsi(dataframe['close'], length=14, rsi_length=14)
dataframe['stochrsi_k_3m'] = stochrsi_3m['STOCHRSIk_14_14_3_3']
dataframe['stochrsi_d_3m'] = stochrsi_3m['STOCHRSId_14_14_3_3']
# 新增 MACD 指标
macd_3m = ta.macd(dataframe['close'], fast=12, slow=26, signal=9)
dataframe['macd_3m'] = macd_3m['MACD_12_26_9']
dataframe['macd_signal_3m'] = macd_3m['MACDs_12_26_9']
dataframe['macd_hist_3m'] = macd_3m['MACDh_12_26_9']
# 计算3m时间框架的EMA50和EMA200
dataframe['ema_50_3m'] = ta.ema(dataframe['close'], length=50)
dataframe['ema_200_3m'] = ta.ema(dataframe['close'], length=200)
# 成交量过滤
dataframe['volume_ma'] = dataframe['volume'].rolling(20).mean()
# 计算 ATR 用于动态止损和退出
dataframe['atr'] = ta.atr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
# 获取 15m 数据
df_15m = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe='15m')
df_15m['rsi_15m'] = ta.rsi(df_15m['close'], length=self.rsi_length)
# 计算15m时间框架的EMA50和EMA200
df_15m['ema_50_15m'] = ta.ema(df_15m['close'], length=50)
df_15m['ema_200_15m'] = ta.ema(df_15m['close'], length=200)
# 新增 StochRSI 指标
stochrsi_15m = ta.stochrsi(df_15m['close'], length=rsi_length_value, rsi_length=rsi_length_value)
df_15m['stochrsi_k_15m'] = stochrsi_15m[f'STOCHRSIk_{rsi_length_value}_{rsi_length_value}_3_3']
df_15m['stochrsi_d_15m'] = stochrsi_15m[f'STOCHRSId_{rsi_length_value}_{rsi_length_value}_3_3']
# 新增 MACD 指标
macd_15m = ta.macd(df_15m['close'], fast=12, slow=26, signal=9)
df_15m['macd_15m'] = macd_15m['MACD_12_26_9']
df_15m['macd_signal_15m'] = macd_15m['MACDs_12_26_9']
df_15m['macd_hist_15m'] = macd_15m['MACDh_12_26_9']
# 将 15m 数据重新索引到主时间框架 (3m)
df_15m = df_15m.set_index('date').reindex(dataframe['date']).reset_index()
df_15m = df_15m.rename(columns={'index': 'date'})
df_15m = df_15m[['date', 'rsi_15m', 'ema_50_15m', 'ema_200_15m']].fillna(method='ffill')
# 合并 15m 数据
dataframe = dataframe.merge(df_15m, how='left', on='date')
# 获取 1h 数据
df_1h = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe='1h')
# 计算 1h 布林带
bb_1h = ta.bbands(df_1h['close'], length=bb_length_value, std=bb_std_value)
df_1h['bb_lower_1h'] = bb_1h[f'BBL_{bb_length_value}_{bb_std_value}']
df_1h['bb_upper_1h'] = bb_1h[f'BBU_{bb_length_value}_{bb_std_value}']
# 计算 1h RSI 和 EMA
df_1h['rsi_1h'] = ta.rsi(df_1h['close'], length=rsi_length_value)
df_1h['ema_50_1h'] = ta.ema(df_1h['close'], length=50) # 1h 50周期EMA
df_1h['ema_200_1h'] = ta.ema(df_1h['close'], length=200) # 1h 200周期EMA
df_1h['trend_1h'] = df_1h['close'] > df_1h['ema_50_1h'] # 1h上涨趋势
# 新增 StochRSI 指标
stochrsi_1h = ta.stochrsi(df_1h['close'], length=rsi_length_value, rsi_length=rsi_length_value)
df_1h['stochrsi_k_1h'] = stochrsi_1h[f'STOCHRSIk_{rsi_length_value}_{rsi_length_value}_3_3']
df_1h['stochrsi_d_1h'] = stochrsi_1h[f'STOCHRSId_{rsi_length_value}_{rsi_length_value}_3_3']
# 新增 MACD 指标
macd_1h = ta.macd(df_1h['close'], fast=12, slow=26, signal=9)
df_1h['macd_1h'] = macd_1h['MACD_12_26_9']
df_1h['macd_signal_1h'] = macd_1h['MACDs_12_26_9']
df_1h['macd_hist_1h'] = macd_1h['MACDh_12_26_9']
# 验证 MACD 列是否正确生成
logger.info(f"[{metadata['pair']}] 1小时 MACD 列: {list(macd_1h.columns)}")
# 确保 StochRSI 指标已正确计算
# 将 1h 数据重新索引到主时间框架 (3m),并填充缺失值
df_1h = df_1h.set_index('date').reindex(dataframe['date']).ffill().bfill().reset_index()
df_1h = df_1h.rename(columns={'index': 'date'})
# Include macd_1h and macd_signal_1h in the column selection
df_1h = df_1h[['date', 'rsi_1h', 'trend_1h', 'ema_50_1h', 'ema_200_1h', 'bb_lower_1h', 'bb_upper_1h', 'stochrsi_k_1h', 'stochrsi_d_1h', 'macd_1h', 'macd_signal_1h']].ffill()
# Validate that all required columns are present
required_columns = ['date', 'rsi_1h', 'trend_1h', 'ema_50_1h', 'ema_200_1h',
'bb_lower_1h', 'bb_upper_1h', 'stochrsi_k_1h', 'stochrsi_d_1h',
'macd_1h', 'macd_signal_1h']
missing_columns = [col for col in required_columns if col not in df_1h.columns]
if missing_columns:
logger.error(f"[{metadata['pair']}] 缺少以下列: {missing_columns}")
raise KeyError(f"缺少以下列: {missing_columns}")
# 确保所有需要的列都被合并
required_columns = ['date', 'rsi_1h', 'trend_1h', 'ema_50_1h', 'ema_200_1h',
'bb_lower_1h', 'bb_upper_1h', 'stochrsi_k_1h', 'stochrsi_d_1h',
'macd_1h', 'macd_signal_1h']
# 验证所需列是否存在
missing_columns = [col for col in required_columns if col not in df_1h.columns]
if missing_columns:
logger.error(f"[{metadata['pair']}] 缺少以下列: {missing_columns}")
raise KeyError(f"缺少以下列: {missing_columns}")
df_1h = df_1h[required_columns] # 确保包含 macd_1h 和 macd_signal_1h
# 合并 1h 数据
dataframe = dataframe.merge(df_1h, how='left', on='date').fillna(method='ffill')
# 验证合并后的列
logger.info(f"[{metadata['pair']}] 合并后的数据框列名: {list(dataframe.columns)}")
# K线形态看涨吞没
dataframe['bullish_engulfing'] = (
(dataframe['close'].shift(1) < dataframe['open'].shift(1)) &
(dataframe['close'] > dataframe['open']) &
(dataframe['close'] > dataframe['open'].shift(1)) &
(dataframe['open'] < dataframe['close'].shift(1))
)
# 计算各时间框架的趋势状态(牛/熊)
# 3m时间框架ema50下穿ema200为熊上穿为牛
dataframe['trend_3m'] = np.where(dataframe['ema_50_3m'] > dataframe['ema_200_3m'], 1, 0)
# 15m时间框架ema50下穿ema200为熊上穿为牛
dataframe['trend_15m'] = np.where(dataframe['ema_50_15m'] > dataframe['ema_200_15m'], 1, 0)
# 1h时间框架ema50下穿ema200为熊上穿为牛
dataframe['trend_1h_ema'] = np.where(dataframe['ema_50_1h'] > dataframe['ema_200_1h'], 1, 0)
# 计算熊牛得分0-100
# 权重3m熊牛权重1015m熊牛权重351h熊牛权重65
# 计算加权得分
dataframe['market_score'] = (
dataframe['trend_3m'] * 10 +
dataframe['trend_15m'] * 35 +
dataframe['trend_1h_ema'] * 65
)
# 确保得分在0-100范围内
dataframe['market_score'] = dataframe['market_score'].clip(lower=0, upper=100)
# 根据得分分类市场状态
dataframe['market_state'] = 'neutral'
dataframe.loc[dataframe['market_score'] > 70, 'market_state'] = 'strong_bull'
dataframe.loc[(dataframe['market_score'] > 50) & (dataframe['market_score'] <= 70), 'market_state'] = 'weak_bull'
dataframe.loc[(dataframe['market_score'] >= 30) & (dataframe['market_score'] <= 50), 'market_state'] = 'neutral'
dataframe.loc[(dataframe['market_score'] > 10) & (dataframe['market_score'] < 30), 'market_state'] = 'weak_bear'
dataframe.loc[dataframe['market_score'] <= 10, 'market_state'] = 'strong_bear'
# 创建一个使用前一行市场状态的列避免在populate_entry_trend中使用iloc[-1]
dataframe['prev_market_state'] = dataframe['market_state'].shift(1)
# 为第一行设置默认值
dataframe['prev_market_state'].fillna('neutral', inplace=True)
# 记录当前的市场状态
if len(dataframe) > 0:
current_score = dataframe['market_score'].iloc[-1]
current_state = dataframe['market_state'].iloc[-1]
logger.info(f"[{metadata['pair']}] 熊牛得分: {current_score:.1f}, 市场状态: {current_state}")
logger.info(f"[{metadata['pair']}] 各时间框架趋势: 3m={'' if dataframe['trend_3m'].iloc[-1] == 1 else ''}, \
15m={'' if dataframe['trend_15m'].iloc[-1] == 1 else ''}, \
1h={'' if dataframe['trend_1h_ema'].iloc[-1] == 1 else ''}")
# 调试:打印指标值(最后 5 行),验证时间对齐
print(f"Pair: {metadata['pair']}, Last 5 rows after reindexing:")
print(dataframe[['date', 'close', 'bb_lower_3m', 'rsi_3m', 'rsi_15m', 'rsi_1h', 'trend_1h',
'trend_3m', 'trend_15m', 'trend_1h_ema', 'market_score', 'market_state',
'bullish_engulfing', 'volume', 'volume_ma']].tail(5))
# 打印最终数据框的列名以验证
logger.info(f"[{metadata['pair']}] 最终数据框列名: {list(dataframe.columns)}")
return dataframe
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# 入场信号主要依据1小时周期
# 条件1: 价格接近布林带下轨
close_to_bb_lower_1h = (dataframe['close'] <= dataframe['bb_lower_1h'] * 1.02)
# 条件2: RSI 不高于阈值
rsi_condition_1h = dataframe['rsi_1h'] < self.rsi_oversold
# 条件3: StochRSI 处于超卖区域
stochrsi_condition_1h = (dataframe['stochrsi_k_1h'] < 20) & (dataframe['stochrsi_d_1h'] < 20)
# 条件4: MACD 上升趋势
macd_condition_1h = dataframe['macd_1h'] > dataframe['macd_signal_1h']
# 辅助条件: 3m 和 15m 趋势确认
trend_confirmation = (dataframe['trend_3m'] == 1) & (dataframe['trend_15m'] == 1)
# 合并所有条件
final_condition = close_to_bb_lower_1h & rsi_condition_1h & stochrsi_condition_1h & macd_condition_1h & trend_confirmation
# 设置入场信号
dataframe.loc[final_condition, 'enter_long'] = 1
# 日志记录
if dataframe['enter_long'].sum() > 0:
logger.info(f"[{metadata['pair']}] 发现入场信号数量: {dataframe['enter_long'].sum()}")
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# 出场信号基于趋势和量价关系
# 条件1: 价格突破布林带上轨
breakout_condition = dataframe['close'] >= dataframe['bb_upper_1h']
# 条件2: 成交量显著放大
volume_spike = dataframe['volume'] > dataframe['volume_ma'] * 2
# 条件3: MACD 下降趋势
macd_downward = dataframe['macd_1h'] < dataframe['macd_signal_1h']
# 条件4: RSI 进入超买区域
rsi_overbought = dataframe['rsi_1h'] > self.rsi_overbought
# 合并所有条件
final_condition = breakout_condition | volume_spike | macd_downward | rsi_overbought
# 设置出场信号
dataframe.loc[final_condition, 'exit_long'] = 1
# 日志记录
if dataframe['exit_long'].sum() > 0:
logger.info(f"[{metadata['pair']}] 触发出场信号数量: {dataframe['exit_long'].sum()}")
return dataframe
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# 确保prev_market_state列存在
if 'prev_market_state' not in dataframe.columns:
dataframe['prev_market_state'] = 'neutral'
# 条件1: 价格接近布林带下轨(允许一定偏差)
close_to_bb_lower_1h = (dataframe['close'] <= dataframe['bb_lower_1h'] * 1.03) # 放宽到3%偏差
# 条件2: RSI 不高于阈值(根据市场状态动态调整)
# 为每一行创建动态阈值
rsi_condition_1h = dataframe.apply(lambda row:
row['rsi_1h'] < 50 if row['prev_market_state'] in ['strong_bull', 'weak_bull'] else row['rsi_1h'] < 45,
axis=1)
# 条件3: StochRSI 处于超卖区域(根据市场状态动态调整)
stochrsi_condition_1h = dataframe.apply(lambda row:
(row['stochrsi_k_1h'] < 35 and row['stochrsi_d_1h'] < 35) if row['prev_market_state'] in ['strong_bull', 'weak_bull']
else (row['stochrsi_k_1h'] < 25 and row['stochrsi_d_1h'] < 25),
axis=1)
# 条件4: MACD 上升趋势
macd_condition_1h = dataframe['macd_1h'] > dataframe['macd_signal_1h']
# 条件5: 成交量显著放大(可选条件)
volume_spike = dataframe['volume'] > dataframe['volume_ma'] * 1.5
# 条件6: 布林带宽度过滤(避免窄幅震荡)
bb_width = (dataframe['bb_upper_1h'] - dataframe['bb_lower_1h']) / dataframe['close']
bb_width_condition = bb_width > 0.02 # 布林带宽度大于2%
# 辅助条件: 3m 和 15m 趋势确认(允许部分时间框架不一致)
trend_confirmation = (dataframe['trend_3m'] == 1) | (dataframe['trend_15m'] == 1)
# 合并所有条件(减少强制性条件)
# 至少满足5个条件中的3个
condition_count = (
close_to_bb_lower_1h.astype(int) +
rsi_condition_1h.astype(int) +
stochrsi_condition_1h.astype(int) +
macd_condition_1h.astype(int) +
(volume_spike | bb_width_condition).astype(int) + # 成交量或布林带宽度满足其一即可
trend_confirmation.astype(int)
)
final_condition = condition_count >= 3
# 设置入场信号
dataframe.loc[final_condition, 'enter_long'] = 1
# 增强调试信息
logger.info(f"[{metadata['pair']}] 入场条件检查:")
logger.info(f" - 价格接近布林带下轨: {close_to_bb_lower_1h.sum()}")
logger.info(f" - RSI 超卖: {rsi_condition_1h.sum()}")
logger.info(f" - StochRSI 超卖: {stochrsi_condition_1h.sum()}")
logger.info(f" - MACD 上升趋势: {macd_condition_1h.sum()}")
logger.info(f" - 成交量或布林带宽度: {(volume_spike | bb_width_condition).sum()}")
logger.info(f" - 趋势确认: {trend_confirmation.sum()}")
logger.info(f" - 最终条件: {final_condition.sum()}")
# 日志记录
if dataframe['enter_long'].sum() > 0:
logger.info(f"[{metadata['pair']}] 发现入场信号数量: {dataframe['enter_long'].sum()}")
return dataframe
def detect_h1_rapid_rise(self, pair: str) -> bool:
"""
检测1小时K线图上的剧烈拉升情况轻量级版本用于confirm_trade_entry
参数:
- pair: 交易对
返回:
- bool: 是否处于不稳固区域
"""
try:
# 获取1小时K线数据
df_1h = self.dp.get_pair_dataframe(pair=pair, timeframe='1h')
# 获取当前优化参数值
max_candles = self.h1_max_candles.value
rapid_rise_threshold = self.h1_rapid_rise_threshold.value
max_consecutive_candles = self.h1_max_consecutive_candles.value
# 确保有足够的K线数据
if len(df_1h) < max_candles:
logger.warning(f"[{pair}] 1h K线数据不足 {max_candles} 根,当前只有 {len(df_1h)} 根,无法完整检测剧烈拉升")
return False
# 获取最近的K线
recent_data = df_1h.iloc[-max_candles:].copy()
# 检查连续最多几根K线内的最大涨幅
rapid_rise_detected = False
max_rise = 0
for i in range(len(recent_data) - max_consecutive_candles + 1):
window_data = recent_data.iloc[i:i + max_consecutive_candles]
window_low = window_data['low'].min()
window_high = window_data['high'].max()
# 计算区间内的最大涨幅
if window_low > 0:
rise_percentage = (window_high - window_low) / window_low
if rise_percentage > max_rise:
max_rise = rise_percentage
# 检查是否超过阈值
if rise_percentage >= rapid_rise_threshold:
rapid_rise_detected = True
logger.info(f"[{pair}] 检测到剧烈拉升: 从 {window_low:.2f}{window_high:.2f} ({rise_percentage:.2%}) 在 {max_consecutive_candles} 根K线内")
break
current_price = recent_data['close'].iloc[-1]
logger.info(f"[{pair}] 剧烈拉升检测结果: {'不稳固' if rapid_rise_detected else '稳固'}")
logger.info(f"[{pair}] 最近最大涨幅: {max_rise:.2%}")
return rapid_rise_detected
except Exception as e:
logger.error(f"[{pair}] 剧烈拉升检测过程中发生错误: {str(e)}")
return False
def confirm_trade_entry(
self,
pair: str,
order_type: str,
amount: float,
rate: float,
time_in_force: str,
current_time: datetime,
entry_tag: str | None,
side: str,
**kwargs,
) -> bool:
"""
交易买入前的确认函数,用于最终决定是否执行交易
此处实现剧烈拉升检查逻辑
"""
# 默认允许交易
allow_trade = True
# 仅对多头交易进行检查
if side == 'long':
# 检查是否处于剧烈拉升的不稳固区域
is_unstable_region = self.detect_h1_rapid_rise(pair)
if is_unstable_region:
logger.info(f"[{pair}] 由于检测到剧烈拉升,取消入场交易")
allow_trade = False
# 如果没有阻止因素,允许交易
return allow_trade
def custom_stoploss(self, pair: str, trade: 'Trade', current_time, current_rate: float,
current_profit: float, **kwargs) -> float:
# 动态止损基于ATR
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1]
atr = last_candle['atr']
# 获取当前市场状态
current_state = dataframe['market_state'].iloc[-1] if 'market_state' in dataframe.columns else 'unknown'
# 更激进的渐进式止损策略
if current_profit > 0.05: # 利润超过5%时
return -3.0 * atr / current_rate # 更大幅扩大止损范围,让利润奔跑
elif current_profit > 0.03: # 利润超过3%时
return -2.5 * atr / current_rate # 更中等扩大止损范围
elif current_profit > 0.01: # 利润超过1%时
return -2.0 * atr / current_rate # 更轻微扩大止损范围
# 在强劲牛市中,即使小亏损也可以容忍更大回调
if current_state == 'strong_bull' and current_profit > -0.01:
return -1.5 * atr / current_rate
# 动态调整止损范围
if current_profit > 0.05: # 利润超过5%时
return -3.0 * atr / current_rate # 更大幅扩大止损范围,让利润奔跑
elif current_profit > 0.03: # 利润超过3%时
return -2.5 * atr / current_rate # 更中等扩大止损范围
elif current_profit > 0.01: # 利润超过1%时
return -2.0 * atr / current_rate # 更轻微扩大止损范围
# 在强劲牛市中,即使小亏损也可以容忍更大回调
if current_state == 'strong_bull' and current_profit > -0.01:
return -1.8 * atr / current_rate
if atr > 0:
return -1.2 * atr / current_rate # 基础1.2倍ATR止损
return self.stoploss
def custom_exit(self, pair: str, trade: 'Trade', current_time, current_rate: float,
current_profit: float, **kwargs) -> float:
"""渐进式止盈逻辑"""
# 获取当前市场状态
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
current_state = dataframe['market_state'].iloc[-1] if 'market_state' in dataframe.columns else 'unknown'
# 定义更激进的渐进式止盈水平,提高收益上限
profit_levels = {
# 状态: [(止盈触发利润, 止盈比例)]
'strong_bull': [(0.04, 0.2), (0.08, 0.4), (0.12, 0.6), (0.16, 0.8), (0.20, 1.0)], # 强劲牛市的渐进止盈,提高目标
'weak_bull': [(0.03, 0.3), (0.06, 0.5), (0.09, 0.7), (0.12, 0.9)], # 弱牛市的渐进止盈
'neutral': [(0.02, 0.4), (0.04, 0.6), (0.06, 0.8), (0.08, 1.0)], # 中性市场的渐进止盈
'bear': [(0.01, 0.6), (0.02, 0.8), (0.03, 1.0)] # 熊市的渐进止盈(更保守)
}
# 默认使用中性市场的止盈设置
levels = profit_levels.get(current_state, profit_levels['neutral'])
# 在强劲牛市中,进一步放宽止盈目标
if current_state == 'strong_bull':
levels = [(p + 0.01, r) for p, r in levels] # 将止盈触发利润提高1%
# 确定当前应该止盈的比例
exit_ratio = 0.0
for profit_target, ratio in levels:
if current_profit >= profit_target:
exit_ratio = ratio
else:
break
# 记录渐进式止盈决策
if exit_ratio > 0:
logger.info(f"[{pair}] 渐进式止盈: 当前利润 {current_profit:.2%}, 市场状态 {current_state}, 止盈比例 {exit_ratio:.0%}")
# 返回应退出的比例0.0表示不退出1.0表示全部退出)
return exit_ratio
def adjust_trade_position(self, trade: 'Trade', current_time, current_rate: float,
current_profit: float, min_stake: float, max_stake: float, **kwargs) -> float:
"""
根据用户要求实现加仓逻辑
- 加仓间隔设置为0.0474.7%回调)
- 加仓额度为: (stake_amount / 2) ^ (加仓次数 - 1)
"""
# 检查是否已启用加仓
if not hasattr(self, 'max_entry_adjustments'):
self.max_entry_adjustments = 3 # 设置最大加仓次数
# 获取当前交易对
pair = trade.pair
# 获取当前交易的加仓次数
# 初始交易算第1次加仓次数=total_entry_position - 1
entry_count = len(trade.orders) # 获取所有入场订单数量
# 如果已经达到最大加仓次数,则不再加仓
if entry_count - 1 >= self.max_entry_adjustments:
return 0.0
# 获取初始入场价格和当前价格的差值百分比
initial_price = trade.open_rate
price_diff_pct = (current_rate - initial_price) / initial_price
# 检查价格回调是否达到加仓间隔0.047
# 价格回调表示价格比初始价格低4.7%或更多
# 同时考虑市场状态,只在市场不是弱势时加仓
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
current_state = dataframe['market_state'].iloc[-1] if 'market_state' in dataframe.columns else 'neutral'
if price_diff_pct <= -0.047 and current_state not in ['bear', 'weak_bear']:
# 计算初始入场金额
initial_stake = trade.orders[0].cost # 第一笔订单的成本
# 计算加仓次数从1开始计数
adjustment_count = entry_count - 1 # 已加仓次数
# 计算加仓额度: (stake_amount / 2) ^ (加仓次数)
# 对于第一次加仓,公式为 (initial_stake / 2) ^ 1 = initial_stake / 2
# 第二次加仓,公式为 (initial_stake / 2) ^ 2
# 第三次加仓,公式为 (initial_stake / 2) ^ 3
# 计算加仓金额
additional_stake = (initial_stake / 2) ** (adjustment_count + 1)
# 确保加仓金额在允许的范围内
additional_stake = max(min_stake, min(additional_stake, max_stake - trade.stake_amount))
logger.info(f"[{pair}] 触发加仓: 第{adjustment_count + 1}次加仓, 初始金额{initial_stake:.2f}, \
加仓金额{additional_stake:.2f}, 价格差{price_diff_pct:.2%}, 当前利润{current_profit:.2%}")
return additional_stake
# 不符合加仓条件返回0
return 0.0