sma
This commit is contained in:
parent
0d914c2b76
commit
fdc1fa0374
@ -1,297 +0,0 @@
|
||||
import logging
|
||||
|
||||
import numpy as np # noqa
|
||||
import pandas as pd # noqa
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from technical import qtpylib
|
||||
|
||||
from freqtrade.strategy import IntParameter, IStrategy, merge_informative_pair
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FreqaiExampleHybridStrategy(IStrategy):
|
||||
"""
|
||||
Example of a hybrid FreqAI strat, designed to illustrate how a user may employ
|
||||
FreqAI to bolster a typical Freqtrade strategy.
|
||||
|
||||
Launching this strategy would be:
|
||||
|
||||
freqtrade trade --strategy FreqaiExampleHybridStrategy --strategy-path freqtrade/templates
|
||||
--freqaimodel CatboostClassifier --config config_examples/config_freqai.example.json
|
||||
|
||||
or the user simply adds this to their config:
|
||||
|
||||
"freqai": {
|
||||
"enabled": true,
|
||||
"purge_old_models": 2,
|
||||
"train_period_days": 15,
|
||||
"identifier": "unique-id",
|
||||
"feature_parameters": {
|
||||
"include_timeframes": [
|
||||
"3m",
|
||||
"15m",
|
||||
"1h"
|
||||
],
|
||||
"include_corr_pairlist": [
|
||||
"BTC/USDT",
|
||||
"ETH/USDT"
|
||||
],
|
||||
"label_period_candles": 20,
|
||||
"include_shifted_candles": 2,
|
||||
"DI_threshold": 0.9,
|
||||
"weight_factor": 0.9,
|
||||
"principal_component_analysis": false,
|
||||
"use_SVM_to_remove_outliers": true,
|
||||
"indicator_periods_candles": [10, 20]
|
||||
},
|
||||
"data_split_parameters": {
|
||||
"test_size": 0,
|
||||
"random_state": 1
|
||||
},
|
||||
"model_training_parameters": {
|
||||
"n_estimators": 200,
|
||||
"max_depth": 5,
|
||||
"learning_rate": 0.05
|
||||
}
|
||||
},
|
||||
|
||||
Thanks to @smarmau and @johanvulgt for developing and sharing the strategy.
|
||||
"""
|
||||
|
||||
minimal_roi = {
|
||||
# "120": 0.0, # exit after 120 minutes at break even
|
||||
"60": 0.01,
|
||||
"30": 0.02,
|
||||
"0": 0.04,
|
||||
}
|
||||
|
||||
plot_config = {
|
||||
"main_plot": {
|
||||
"tema": {},
|
||||
},
|
||||
"subplots": {
|
||||
"MACD": {
|
||||
"macd": {"color": "blue"},
|
||||
"macdsignal": {"color": "orange"},
|
||||
},
|
||||
"RSI": {
|
||||
"rsi": {"color": "red"},
|
||||
},
|
||||
"Up_or_down": {
|
||||
"&s-up_or_down": {"color": "green"},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
process_only_new_candles = True
|
||||
stoploss = -0.05
|
||||
use_exit_signal = True
|
||||
startup_candle_count: int = 30
|
||||
can_short = False
|
||||
|
||||
# Hyperoptable parameters
|
||||
buy_rsi = IntParameter(low=1, high=50, default=30, space="buy", optimize=True, load=True)
|
||||
sell_rsi = IntParameter(low=50, high=100, default=70, space="sell", optimize=True, load=True)
|
||||
|
||||
def feature_engineering_expand_all(
|
||||
self, dataframe: DataFrame, period: int, metadata: dict, **kwargs
|
||||
) -> DataFrame:
|
||||
"""
|
||||
*Only functional with FreqAI enabled strategies*
|
||||
This function will automatically expand the defined features on the config defined
|
||||
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
|
||||
`include_corr_pairs`. In other words, a single feature defined in this function
|
||||
will automatically expand to a total of
|
||||
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
|
||||
`include_corr_pairs` numbers of features added to the model.
|
||||
|
||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||
|
||||
More details on how these config defined parameters accelerate feature engineering
|
||||
in the documentation at:
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
||||
|
||||
:param dataframe: strategy dataframe which will receive the features
|
||||
:param period: period of the indicator - usage example:
|
||||
:param metadata: metadata of current pair
|
||||
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||
"""
|
||||
|
||||
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||
|
||||
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||
|
||||
bollinger = qtpylib.bollinger_bands(
|
||||
qtpylib.typical_price(dataframe), window=period, stds=2
|
||||
)
|
||||
dataframe["bb_lowerband-period"] = bollinger["lower"]
|
||||
dataframe["bb_middleband-period"] = bollinger["mid"]
|
||||
dataframe["bb_upperband-period"] = bollinger["upper"]
|
||||
|
||||
dataframe["%-bb_width-period"] = (
|
||||
dataframe["bb_upperband-period"] - dataframe["bb_lowerband-period"]
|
||||
) / dataframe["bb_middleband-period"]
|
||||
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_expand_basic(
|
||||
self, dataframe: DataFrame, metadata: dict, **kwargs
|
||||
) -> DataFrame:
|
||||
"""
|
||||
*Only functional with FreqAI enabled strategies*
|
||||
This function will automatically expand the defined features on the config defined
|
||||
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
|
||||
In other words, a single feature defined in this function
|
||||
will automatically expand to a total of
|
||||
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
|
||||
numbers of features added to the model.
|
||||
|
||||
Features defined here will *not* be automatically duplicated on user defined
|
||||
`indicator_periods_candles`
|
||||
|
||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||
|
||||
More details on how these config defined parameters accelerate feature engineering
|
||||
in the documentation at:
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
||||
|
||||
:param dataframe: strategy dataframe which will receive the features
|
||||
:param metadata: metadata of current pair
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
|
||||
"""
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_standard(
|
||||
self, dataframe: DataFrame, metadata: dict, **kwargs
|
||||
) -> DataFrame:
|
||||
"""
|
||||
*Only functional with FreqAI enabled strategies*
|
||||
This optional function will be called once with the dataframe of the base timeframe.
|
||||
This is the final function to be called, which means that the dataframe entering this
|
||||
function will contain all the features and columns created by all other
|
||||
freqai_feature_engineering_* functions.
|
||||
|
||||
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
|
||||
This function is a good place for any feature that should not be auto-expanded upon
|
||||
(e.g. day of the week).
|
||||
|
||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||
|
||||
More details about feature engineering available:
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||
|
||||
:param dataframe: strategy dataframe which will receive the features
|
||||
:param metadata: metadata of current pair
|
||||
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
||||
"""
|
||||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||
return dataframe
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
"""
|
||||
Redefined target variable to predict whether the price will increase or decrease in the future.
|
||||
"""
|
||||
logger.info(f"Setting FreqAI targets for pair: {metadata['pair']}")
|
||||
|
||||
if "close" not in dataframe.columns:
|
||||
logger.error("Required 'close' column missing in dataframe")
|
||||
raise ValueError("Required 'close' column missing in dataframe")
|
||||
|
||||
if len(dataframe) < 50:
|
||||
logger.error(f"Insufficient data: {len(dataframe)} rows, need at least 50 for shift(-50)")
|
||||
raise ValueError("Insufficient data for target calculation")
|
||||
|
||||
try:
|
||||
# Define target variable: 1 for price increase, 0 for price decrease
|
||||
dataframe["&-up_or_down"] = np.where(
|
||||
dataframe["close"].shift(-50) > dataframe["close"], 1, 0
|
||||
)
|
||||
# Ensure target variable is a 2D array
|
||||
dataframe["&-up_or_down"] = dataframe["&-up_or_down"].values.reshape(-1, 1)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to create &-up_or_down column: {str(e)}")
|
||||
raise
|
||||
|
||||
logger.info("FreqAI targets set successfully")
|
||||
return dataframe
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
logger.info(f"Processing pair: {metadata['pair']}")
|
||||
logger.info(f"Input DataFrame shape: {dataframe.shape}")
|
||||
logger.info(f"Input DataFrame columns: {list(dataframe.columns)}")
|
||||
logger.info(f"Input DataFrame head:\n{dataframe[['date', 'close', 'volume']].head().to_string()}")
|
||||
|
||||
# Ensure FreqAI processing
|
||||
logger.info("Calling self.freqai.start")
|
||||
try:
|
||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||
except Exception as e:
|
||||
logger.error(f"self.freqai.start failed: {str(e)}")
|
||||
raise
|
||||
logger.info("self.freqai.start completed")
|
||||
|
||||
logger.info(f"Output DataFrame shape: {dataframe.shape}")
|
||||
logger.info(f"Output DataFrame columns: {list(dataframe.columns)}")
|
||||
# Safely log columns that exist
|
||||
available_columns = [col for col in ['date', 'close', '&-up_or_down'] if col in dataframe.columns]
|
||||
logger.info(f"Output DataFrame head:\n{dataframe[available_columns].head().to_string()}")
|
||||
|
||||
if "&-up_or_down" not in dataframe.columns:
|
||||
logger.error("FreqAI did not generate the required &-up_or_down column")
|
||||
raise KeyError("FreqAI did not generate the required &-up_or_down column")
|
||||
|
||||
# RSI
|
||||
dataframe["rsi"] = ta.RSI(dataframe)
|
||||
|
||||
# Bollinger Bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe["bb_lowerband"] = bollinger["lower"]
|
||||
dataframe["bb_middleband"] = bollinger["mid"]
|
||||
dataframe["bb_upperband"] = bollinger["upper"]
|
||||
dataframe["bb_percent"] = (dataframe["close"] - dataframe["bb_lowerband"]) / (
|
||||
dataframe["bb_upperband"] - dataframe["bb_lowerband"]
|
||||
)
|
||||
dataframe["bb_width"] = (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe[
|
||||
"bb_middleband"
|
||||
]
|
||||
|
||||
# TEMA
|
||||
dataframe["tema"] = ta.TEMA(dataframe, timeperiod=9)
|
||||
|
||||
return dataframe
|
||||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
df.loc[
|
||||
(
|
||||
(qtpylib.crossed_above(df["rsi"], self.buy_rsi.value))
|
||||
& (df["tema"] <= df["bb_middleband"])
|
||||
& (df["tema"] > df["tema"].shift(1))
|
||||
& (df["volume"] > 0)
|
||||
),
|
||||
"enter_long",
|
||||
] = 1
|
||||
return df
|
||||
|
||||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
df.loc[
|
||||
(
|
||||
(qtpylib.crossed_above(df["rsi"], self.sell_rsi.value))
|
||||
& (df["tema"] > df["bb_middleband"])
|
||||
& (df["tema"] < df["tema"].shift(1))
|
||||
& (df["volume"] > 0)
|
||||
),
|
||||
"exit_long",
|
||||
] = 1
|
||||
return df
|
||||
@ -1,32 +0,0 @@
|
||||
{
|
||||
"strategy_name": "FreqaiExampleStrategy",
|
||||
"params": {
|
||||
"trailing": {
|
||||
"trailing_stop": true,
|
||||
"trailing_stop_positive": 0.01,
|
||||
"trailing_stop_positive_offset": 0.02,
|
||||
"trailing_only_offset_is_reached": false
|
||||
},
|
||||
"max_open_trades": {
|
||||
"max_open_trades": 4
|
||||
},
|
||||
"buy": {
|
||||
"buy_rsi": 39.92672300850069
|
||||
},
|
||||
"sell": {
|
||||
"sell_rsi": 69.92672300850067
|
||||
},
|
||||
"protection": {},
|
||||
"roi": {
|
||||
"0": 0.132,
|
||||
"8": 0.047,
|
||||
"14": 0.007,
|
||||
"60": 0
|
||||
},
|
||||
"stoploss": {
|
||||
"stoploss": -0.322
|
||||
}
|
||||
},
|
||||
"ft_stratparam_v": 1,
|
||||
"export_time": "2025-04-23 12:30:05.550433+00:00"
|
||||
}
|
||||
@ -30,7 +30,7 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
|
||||
# FreqAI 配置
|
||||
freqai_info = {
|
||||
"model": "CatboostClassifier", # 与config保持一致
|
||||
"model": "XGBoostRegressor", # 与config保持一致
|
||||
"feature_parameters": {
|
||||
"include_timeframes": ["3m", "15m", "1h"], # 与config一致
|
||||
"include_corr_pairlist": ["BTC/USDT", "SOL/USDT"], # 添加相关交易对
|
||||
|
||||
@ -1,336 +0,0 @@
|
||||
import logging
|
||||
import numpy as np
|
||||
from functools import reduce
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from technical import qtpylib
|
||||
from freqtrade.strategy import IStrategy, IntParameter, DecimalParameter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class FreqaiExampleStrategy(IStrategy):
|
||||
# 移除硬编码的 minimal_roi 和 stoploss,改为动态适配
|
||||
minimal_roi = {} # 将在 populate_indicators 中动态生成
|
||||
stoploss = 0.0 # 将在 populate_indicators 中动态设置
|
||||
trailing_stop = True
|
||||
process_only_new_candles = True
|
||||
use_exit_signal = True
|
||||
startup_candle_count: int = 40
|
||||
can_short = False
|
||||
|
||||
# 参数定义:FreqAI 动态适配 buy_rsi 和 sell_rsi,禁用 Hyperopt 优化
|
||||
buy_rsi = IntParameter(low=10, high=50, default=27, space="buy", optimize=False, load=True)
|
||||
sell_rsi = IntParameter(low=50, high=90, default=59, space="sell", optimize=False, load=True)
|
||||
|
||||
# 为 Hyperopt 优化添加 ROI 和 stoploss 参数
|
||||
roi_0 = DecimalParameter(low=0.01, high=0.2, default=0.038, space="roi", optimize=True, load=True)
|
||||
roi_15 = DecimalParameter(low=0.005, high=0.1, default=0.027, space="roi", optimize=True, load=True)
|
||||
roi_30 = DecimalParameter(low=0.001, high=0.05, default=0.009, space="roi", optimize=True, load=True)
|
||||
stoploss_param = DecimalParameter(low=-0.35, high=-0.1, default=-0.182, space="stoploss", optimize=True, load=True)
|
||||
|
||||
# FreqAI 配置
|
||||
freqai_info = {
|
||||
"model": "CatboostClassifier", # 与config保持一致
|
||||
"feature_parameters": {
|
||||
"include_timeframes": ["3m", "15m", "1h"], # 与config一致
|
||||
"include_corr_pairlist": ["BTC/USDT", "SOL/USDT"], # 添加相关交易对
|
||||
"label_period_candles": 20, # 与config一致
|
||||
"include_shifted_candles": 2, # 与config一致
|
||||
},
|
||||
"data_split_parameters": {
|
||||
"test_size": 0.2,
|
||||
"shuffle": True, # 启用shuffle
|
||||
},
|
||||
"model_training_parameters": {
|
||||
"n_estimators": 100, # 减少树的数量
|
||||
"learning_rate": 0.1, # 提高学习率
|
||||
"max_depth": 6, # 限制树深度
|
||||
"subsample": 0.8, # 添加子采样
|
||||
"colsample_bytree": 0.8, # 添加特征采样
|
||||
"objective": "reg:squarederror",
|
||||
"eval_metric": "rmse",
|
||||
"early_stopping_rounds": 20,
|
||||
"verbose": 0,
|
||||
},
|
||||
"data_kitchen": {
|
||||
"feature_parameters": {
|
||||
"DI_threshold": 1.5, # 降低异常值过滤阈值
|
||||
"use_DBSCAN_to_remove_outliers": False # 禁用DBSCAN
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
plot_config = {
|
||||
"main_plot": {},
|
||||
"subplots": {
|
||||
"&-buy_rsi": {"&-buy_rsi": {"color": "green"}},
|
||||
"&-sell_rsi": {"&-sell_rsi": {"color": "red"}},
|
||||
"&-stoploss": {"&-stoploss": {"color": "purple"}},
|
||||
"&-roi_0": {"&-roi_0": {"color": "orange"}},
|
||||
"do_predict": {"do_predict": {"color": "brown"}},
|
||||
},
|
||||
}
|
||||
|
||||
def featcaure_engineering_expand_all(self, dataframe: DataFrame, period: int, metadata: dict, **kwargs) -> DataFrame:
|
||||
# 保留关键的技术指标
|
||||
dataframe["rsi"] = ta.RSI(dataframe, timeperiod=14)
|
||||
|
||||
# 确保 MACD 列被正确计算并保留
|
||||
try:
|
||||
macd = ta.MACD(dataframe, fastperiod=12, slowperiod=26, signalperiod=9)
|
||||
dataframe["macd"] = macd["macd"]
|
||||
dataframe["macdsignal"] = macd["macdsignal"]
|
||||
except Exception as e:
|
||||
logger.error(f"计算 MACD 列时出错:{str(e)}")
|
||||
dataframe["macd"] = np.nan
|
||||
dataframe["macdsignal"] = np.nan
|
||||
|
||||
# 检查 MACD 列是否存在
|
||||
if "macd" not in dataframe.columns or "macdsignal" not in dataframe.columns:
|
||||
logger.error("MACD 或 MACD 信号列缺失,无法生成买入信号")
|
||||
raise ValueError("DataFrame 缺少必要的 MACD 列")
|
||||
|
||||
# 确保 MACD 列存在
|
||||
if "macd" not in dataframe.columns or "macdsignal" not in dataframe.columns:
|
||||
logger.error("MACD 或 MACD 信号列缺失,无法生成买入信号")
|
||||
raise ValueError("DataFrame 缺少必要的 MACD 列")
|
||||
|
||||
# 保留布林带相关特征
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe["bb_lowerband"] = bollinger["lower"]
|
||||
dataframe["bb_middleband"] = bollinger["mid"]
|
||||
dataframe["bb_upperband"] = bollinger["upper"]
|
||||
|
||||
# 保留成交量相关特征
|
||||
dataframe["volume_ma"] = dataframe["volume"].rolling(window=20).mean()
|
||||
|
||||
# 数据清理
|
||||
for col in dataframe.columns:
|
||||
if dataframe[col].dtype in ["float64", "int64"]:
|
||||
dataframe[col] = dataframe[col].replace([np.inf, -np.inf], np.nan)
|
||||
dataframe[col] = dataframe[col].ffill().fillna(0)
|
||||
|
||||
logger.info(f"特征工程完成,特征数量:{len(dataframe.columns)}")
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||
dataframe["%-raw_price"] = dataframe["close"]
|
||||
# 数据清理逻辑
|
||||
for col in dataframe.columns:
|
||||
if dataframe[col].dtype in ["float64", "int64"]:
|
||||
dataframe[col] = dataframe[col].replace([np.inf, -np.inf], 0)
|
||||
dataframe[col] = dataframe[col].ffill()
|
||||
dataframe[col] = dataframe[col].fillna(0)
|
||||
|
||||
# 检查是否仍有无效值
|
||||
if dataframe[col].isna().any() or np.isinf(dataframe[col]).any():
|
||||
logger.warning(f"列 {col} 仍包含无效值,已填充为默认值")
|
||||
dataframe[col] = dataframe[col].fillna(0)
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_standard(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
|
||||
dataframe.ffill(inplace=True)
|
||||
dataframe.fillna(0, inplace=True)
|
||||
return dataframe
|
||||
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
logger.info(f"设置 FreqAI 目标,交易对:{metadata['pair']}")
|
||||
if "close" not in dataframe.columns:
|
||||
logger.error("数据框缺少必要的 'close' 列")
|
||||
raise ValueError("数据框缺少必要的 'close' 列")
|
||||
|
||||
try:
|
||||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
||||
|
||||
# 定义目标变量为未来价格变化百分比(连续值)
|
||||
dataframe["up_or_down"] = (
|
||||
dataframe["close"].shift(-label_period) - dataframe["close"]
|
||||
) / dataframe["close"]
|
||||
|
||||
# 数据清理:处理 NaN 和 Inf 值
|
||||
dataframe["up_or_down"] = dataframe["up_or_down"].replace([np.inf, -np.inf], np.nan)
|
||||
dataframe["up_or_down"] = dataframe["up_or_down"].ffill().fillna(0)
|
||||
|
||||
# 确保目标变量是二维数组
|
||||
if dataframe["up_or_down"].ndim == 1:
|
||||
dataframe["up_or_down"] = dataframe["up_or_down"].values.reshape(-1, 1)
|
||||
|
||||
# 检查并处理 NaN 或无限值
|
||||
dataframe["up_or_down"] = dataframe["up_or_down"].replace([np.inf, -np.inf], np.nan)
|
||||
dataframe["up_or_down"] = dataframe["up_or_down"].ffill().fillna(0)
|
||||
|
||||
# 生成 %-volatility 特征
|
||||
dataframe["%-volatility"] = dataframe["close"].pct_change().rolling(20).std()
|
||||
|
||||
# 确保 &-buy_rsi 列的值计算正确
|
||||
dataframe["&-buy_rsi"] = ta.RSI(dataframe, timeperiod=14)
|
||||
|
||||
# 数据清理
|
||||
for col in ["&-buy_rsi", "up_or_down", "%-volatility"]:
|
||||
# 使用直接操作避免链式赋值
|
||||
dataframe[col] = dataframe[col].replace([np.inf, -np.inf], np.nan)
|
||||
dataframe[col] = dataframe[col].ffill() # 替代 fillna(method='ffill')
|
||||
dataframe[col] = dataframe[col].fillna(dataframe[col].mean()) # 使用均值填充 NaN 值
|
||||
if dataframe[col].isna().any():
|
||||
logger.warning(f"目标列 {col} 仍包含 NaN,填充为默认值")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"创建 FreqAI 目标失败:{str(e)}")
|
||||
raise
|
||||
|
||||
# Log the shape of the target variable for debugging
|
||||
logger.info(f"目标列形状:{dataframe['up_or_down'].shape}")
|
||||
logger.info(f"目标列预览:\n{dataframe[['up_or_down', '&-buy_rsi']].head().to_string()}")
|
||||
return dataframe
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
logger.info(f"处理交易对:{metadata['pair']}")
|
||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||
|
||||
# 计算传统指标
|
||||
dataframe["rsi"] = ta.RSI(dataframe, timeperiod=14)
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe["bb_lowerband"] = bollinger["lower"]
|
||||
dataframe["bb_middleband"] = bollinger["mid"]
|
||||
dataframe["bb_upperband"] = bollinger["upper"]
|
||||
dataframe["tema"] = ta.TEMA(dataframe, timeperiod=9)
|
||||
|
||||
# 生成 up_or_down 信号(非 FreqAI 目标)
|
||||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
||||
# 使用未来价格变化方向生成 up_or_down 信号
|
||||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
||||
dataframe["up_or_down"] = np.where(
|
||||
dataframe["close"].shift(-label_period) > dataframe["close"], 1, 0
|
||||
)
|
||||
|
||||
# 动态设置参数
|
||||
if "&-buy_rsi" in dataframe.columns:
|
||||
# 派生其他目标
|
||||
dataframe["&-sell_rsi"] = dataframe["&-buy_rsi"] + 30
|
||||
dataframe["%-volatility"] = dataframe["close"].pct_change().rolling(20).std()
|
||||
# Ensure proper calculation and handle potential NaN values
|
||||
dataframe["&-stoploss"] = (-0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)).fillna(-0.1)
|
||||
dataframe["&-roi_0"] = ((dataframe["close"] / dataframe["close"].shift(label_period) - 1).clip(0, 0.2)).fillna(0)
|
||||
|
||||
# Additional check to ensure no NaN values remain
|
||||
for col in ["&-stoploss", "&-roi_0"]:
|
||||
if dataframe[col].isna().any():
|
||||
logger.warning(f"列 {col} 仍包含 NaN,填充为默认值")
|
||||
dataframe[col] = dataframe[col].fillna(-0.1 if col == "&-stoploss" else 0)
|
||||
|
||||
# 简化动态参数生成逻辑
|
||||
# 放松 buy_rsi 和 sell_rsi 的生成逻辑
|
||||
# 计算 buy_rsi_pred 并清理 NaN 值
|
||||
dataframe["buy_rsi_pred"] = dataframe["rsi"].rolling(window=10).mean().clip(30, 50)
|
||||
dataframe["buy_rsi_pred"] = dataframe["buy_rsi_pred"].fillna(dataframe["buy_rsi_pred"].median())
|
||||
|
||||
# 计算 sell_rsi_pred 并清理 NaN 值
|
||||
dataframe["sell_rsi_pred"] = dataframe["buy_rsi_pred"] + 20
|
||||
dataframe["sell_rsi_pred"] = dataframe["sell_rsi_pred"].fillna(dataframe["sell_rsi_pred"].median())
|
||||
|
||||
# 计算 stoploss_pred 并清理 NaN 值
|
||||
dataframe["stoploss_pred"] = -0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)
|
||||
dataframe["stoploss_pred"] = dataframe["stoploss_pred"].fillna(dataframe["stoploss_pred"].mean())
|
||||
|
||||
# 计算 roi_0_pred 并清理 NaN 值
|
||||
dataframe["roi_0_pred"] = dataframe["&-roi_0"].clip(0.01, 0.2)
|
||||
dataframe["roi_0_pred"] = dataframe["roi_0_pred"].fillna(dataframe["roi_0_pred"].mean())
|
||||
|
||||
# 检查预测值
|
||||
for col in ["buy_rsi_pred", "sell_rsi_pred", "stoploss_pred", "roi_0_pred", "&-sell_rsi", "&-stoploss", "&-roi_0"]:
|
||||
if dataframe[col].isna().any():
|
||||
logger.warning(f"列 {col} 包含 NaN,填充为默认值")
|
||||
dataframe[col] = dataframe[col].fillna(dataframe[col].mean())
|
||||
|
||||
# 更保守的止损和止盈设置
|
||||
dataframe["trailing_stop_positive"] = (dataframe["roi_0_pred"] * 0.3).clip(0.01, 0.2)
|
||||
dataframe["trailing_stop_positive_offset"] = (dataframe["roi_0_pred"] * 0.5).clip(0.01, 0.3)
|
||||
|
||||
# 设置策略级参数
|
||||
self.buy_rsi.value = float(dataframe["buy_rsi_pred"].iloc[-1])
|
||||
self.sell_rsi.value = float(dataframe["sell_rsi_pred"].iloc[-1])
|
||||
# 更保守的止损设置
|
||||
self.stoploss = -0.15 # 固定止损 15%
|
||||
self.minimal_roi = {
|
||||
0: float(self.roi_0.value),
|
||||
15: float(self.roi_15.value),
|
||||
30: float(self.roi_30.value),
|
||||
60: 0
|
||||
}
|
||||
# 更保守的追踪止损设置
|
||||
self.trailing_stop_positive = 0.05 # 追踪止损触发点
|
||||
self.trailing_stop_positive_offset = 0.1 # 追踪止损偏移量
|
||||
|
||||
logger.info(f"动态参数:buy_rsi={self.buy_rsi.value}, sell_rsi={self.sell_rsi.value}, "
|
||||
f"stoploss={self.stoploss}, trailing_stop_positive={self.trailing_stop_positive}")
|
||||
|
||||
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
|
||||
dataframe.ffill(inplace=True)
|
||||
dataframe.fillna(0, inplace=True)
|
||||
|
||||
logger.info(f"up_or_down 值统计:\n{dataframe['up_or_down'].value_counts().to_string()}")
|
||||
logger.info(f"do_predict 值统计:\n{dataframe['do_predict'].value_counts().to_string()}")
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
# 改进卖出信号条件
|
||||
exit_long_conditions = [
|
||||
(df["rsi"] > df["sell_rsi_pred"]), # RSI 高于卖出阈值
|
||||
(df["volume"] > df["volume"].rolling(window=10).mean()), # 成交量高于近期均值
|
||||
(df["close"] < df["bb_middleband"]) # 价格低于布林带中轨
|
||||
]
|
||||
if exit_long_conditions:
|
||||
df.loc[
|
||||
reduce(lambda x, y: x & y, exit_long_conditions),
|
||||
"exit_long"
|
||||
] = 1
|
||||
return df
|
||||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
# 改进买入信号条件
|
||||
# 检查 MACD 列是否存在
|
||||
if "macd" not in df.columns or "macdsignal" not in df.columns:
|
||||
logger.error("MACD 或 MACD 信号列缺失,无法生成买入信号。尝试重新计算 MACD 列。")
|
||||
|
||||
try:
|
||||
macd = ta.MACD(df, fastperiod=12, slowperiod=26, signalperiod=9)
|
||||
df["macd"] = macd["macd"]
|
||||
df["macdsignal"] = macd["macdsignal"]
|
||||
logger.info("MACD 列已成功重新计算。")
|
||||
except Exception as e:
|
||||
logger.error(f"重新计算 MACD 列时出错:{str(e)}")
|
||||
raise ValueError("DataFrame 缺少必要的 MACD 列且无法重新计算。")
|
||||
|
||||
enter_long_conditions = [
|
||||
(df["rsi"] < df["buy_rsi_pred"]), # RSI 低于买入阈值
|
||||
(df["volume"] > df["volume"].rolling(window=10).mean() * 1.2), # 成交量高于近期均值20%
|
||||
(df["close"] > df["bb_middleband"]) # 价格高于布林带中轨
|
||||
]
|
||||
|
||||
# 如果 MACD 列存在,则添加 MACD 金叉条件
|
||||
if "macd" in df.columns and "macdsignal" in df.columns:
|
||||
enter_long_conditions.append((df["macd"] > df["macdsignal"]))
|
||||
|
||||
# 确保模型预测为买入
|
||||
enter_long_conditions.append((df["do_predict"] == 1))
|
||||
if enter_long_conditions:
|
||||
df.loc[
|
||||
reduce(lambda x, y: x & y, enter_long_conditions),
|
||||
["enter_long", "enter_tag"]
|
||||
] = (1, "long")
|
||||
return df
|
||||
def confirm_trade_entry(
|
||||
self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, current_time, entry_tag, side: str, **kwargs
|
||||
) -> bool:
|
||||
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
last_candle = df.iloc[-1].squeeze()
|
||||
if side == "long":
|
||||
if rate > (last_candle["close"] * (1 + 0.0025)):
|
||||
return False
|
||||
return True
|
||||
Loading…
x
Reference in New Issue
Block a user