up
Some checks are pending
Update Docker Hub Description / dockerHubDescription (push) Waiting to run

This commit is contained in:
zhangkun9038@dingtalk.com 2025-04-28 11:52:45 +08:00
parent 872bfe4078
commit c145d5d452
2 changed files with 244 additions and 29 deletions

View File

@ -145,7 +145,7 @@ class FreqaiExampleStrategy(IStrategy):
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
# 使用历史数据生成 up_or_down 信号
dataframe["up_or_down"] = np.where(
dataframe["close"] > dataframe["close"].shift(label_period), 1, 0
dataframe["close"] > dataframe["close"].shift(1), 1, 0
)
# 动态设置参数
@ -154,25 +154,13 @@ class FreqaiExampleStrategy(IStrategy):
dataframe["&-sell_rsi"] = dataframe["&-buy_rsi"] + 30
dataframe["%-volatility"] = dataframe["close"].pct_change().rolling(20).std()
dataframe["&-stoploss"] = -0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)
dataframe["&-roi_0"] = (dataframe["close"].shift(-label_period) / dataframe["close"] - 1).clip(0, 0.2)
dataframe["&-roi_0"] = (dataframe["close"] / dataframe["close"].shift(label_period) - 1).clip(0, 0.2)
# 限制预测值,添加平滑
dataframe["buy_rsi_pred"] = dataframe["&-buy_rsi"].rolling(5).mean().clip(10, 50)
dataframe["buy_rsi_pred"].fillna(dataframe["buy_rsi_pred"].mean(), inplace=True)
if dataframe["buy_rsi_pred"].isna().any():
logger.warning("buy_rsi_pred 列包含 NaN已填充为默认值")
dataframe["sell_rsi_pred"] = dataframe["&-sell_rsi"].rolling(5).mean().clip(50, 90)
dataframe["sell_rsi_pred"].fillna(dataframe["sell_rsi_pred"].mean(), inplace=True)
if dataframe["sell_rsi_pred"].isna().any():
logger.warning("sell_rsi_pred 列包含 NaN已填充为默认值")
dataframe["stoploss_pred"] = dataframe["&-stoploss"].clip(-0.35, -0.1)
dataframe["stoploss_pred"].fillna(dataframe["stoploss_pred"].mean(), inplace=True)
if dataframe["stoploss_pred"].isna().any():
logger.warning("stoploss_pred 列包含 NaN已填充为默认值")
# 简化动态参数生成逻辑
dataframe["buy_rsi_pred"] = dataframe["&-buy_rsi"].clip(10, 50)
dataframe["sell_rsi_pred"] = dataframe["&-buy_rsi"] + 30
dataframe["stoploss_pred"] = -0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)
dataframe["roi_0_pred"] = dataframe["&-roi_0"].clip(0.01, 0.2)
dataframe["roi_0_pred"].fillna(dataframe["roi_0_pred"].mean(), inplace=True)
if dataframe["roi_0_pred"].isna().any():
logger.warning("roi_0_pred 列包含 NaN已填充为默认值")
# 检查预测值
for col in ["buy_rsi_pred", "sell_rsi_pred", "stoploss_pred", "roi_0_pred", "&-sell_rsi", "&-stoploss", "&-roi_0"]:
@ -180,9 +168,9 @@ class FreqaiExampleStrategy(IStrategy):
logger.warning(f"{col} 包含 NaN填充为默认值")
dataframe[col].fillna(dataframe[col].mean(), inplace=True)
# 动态追踪止盈
dataframe["trailing_stop_positive"] = (dataframe["roi_0_pred"] * 0.5).clip(0.01, 0.3)
dataframe["trailing_stop_positive_offset"] = (dataframe["roi_0_pred"] * 0.75).clip(0.02, 0.4)
# 更保守的止损和止盈设置
dataframe["trailing_stop_positive"] = (dataframe["roi_0_pred"] * 0.3).clip(0.01, 0.2)
dataframe["trailing_stop_positive_offset"] = (dataframe["roi_0_pred"] * 0.5).clip(0.01, 0.3)
# 设置策略级参数
self.buy_rsi.value = float(dataframe["buy_rsi_pred"].iloc[-1])
@ -212,10 +200,7 @@ class FreqaiExampleStrategy(IStrategy):
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [
qtpylib.crossed_above(df["rsi"], df["buy_rsi_pred"]),
df["tema"] > df["tema"].shift(1),
df["volume"] > 0,
df["do_predict"] == 1,
df["up_or_down"] == 1
df["volume"] > 0
]
if enter_long_conditions:
df.loc[
@ -227,10 +212,7 @@ class FreqaiExampleStrategy(IStrategy):
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
exit_long_conditions = [
qtpylib.crossed_above(df["rsi"], df["sell_rsi_pred"]),
(df["close"] < df["close"].shift(1) * 0.97),
df["volume"] > 0,
df["do_predict"] == 1,
df["up_or_down"] == 0
df["volume"] > 0
]
if exit_long_conditions:
df.loc[

233
请啊! Normal file
View File

@ -0,0 +1,233 @@
import logging
import numpy as np
from functools import reduce
import talib.abstract as ta
from pandas import DataFrame
from technical import qtpylib
from freqtrade.strategy import IStrategy, IntParameter, DecimalParameter
logger = logging.getLogger(__name__)
class FreqaiExampleStrategy(IStrategy):
# 移除硬编码的 minimal_roi 和 stoploss改为动态适配
minimal_roi = {} # 将在 populate_indicators 中动态生成
stoploss = 0.0 # 将在 populate_indicators 中动态设置
trailing_stop = True
process_only_new_candles = True
use_exit_signal = True
startup_candle_count: int = 40
can_short = False
# 参数定义FreqAI 动态适配 buy_rsi 和 sell_rsi禁用 Hyperopt 优化
buy_rsi = IntParameter(low=10, high=50, default=27, space="buy", optimize=False, load=True)
sell_rsi = IntParameter(low=50, high=90, default=59, space="sell", optimize=False, load=True)
# 为 Hyperopt 优化添加 ROI 和 stoploss 参数
roi_0 = DecimalParameter(low=0.01, high=0.2, default=0.038, space="roi", optimize=True, load=True)
roi_15 = DecimalParameter(low=0.005, high=0.1, default=0.027, space="roi", optimize=True, load=True)
roi_30 = DecimalParameter(low=0.001, high=0.05, default=0.009, space="roi", optimize=True, load=True)
stoploss_param = DecimalParameter(low=-0.35, high=-0.1, default=-0.182, space="stoploss", optimize=True, load=True)
# FreqAI 配置
freqai_info = {
"model": "LightGBMRegressor",
"feature_parameters": {
"include_timeframes": ["5m", "15m", "1h"],
"include_corr_pairlist": [],
"label_period_candles": 12,
"include_shifted_candles": 3,
},
"data_split_parameters": {
"test_size": 0.2,
"shuffle": False,
},
"model_training_parameters": {
"n_estimators": 100,
"learning_rate": 0.1,
"num_leaves": 31,
"verbose": -1,
},
}
plot_config = {
"main_plot": {},
"subplots": {
"&-buy_rsi": {"&-buy_rsi": {"color": "green"}},
"&-sell_rsi": {"&-sell_rsi": {"color": "red"}},
"&-stoploss": {"&-stoploss": {"color": "purple"}},
"&-roi_0": {"&-roi_0": {"color": "orange"}},
"do_predict": {"do_predict": {"color": "brown"}},
},
}
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int, metadata: dict, **kwargs) -> DataFrame:
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=period, stds=2.2)
dataframe["bb_lowerband-period"] = bollinger["lower"]
dataframe["bb_middleband-period"] = bollinger["mid"]
dataframe["bb_upperband-period"] = bollinger["upper"]
dataframe["%-bb_width-period"] = (
dataframe["bb_upperband-period"] - dataframe["bb_lowerband-period"]
) / dataframe["bb_middleband-period"]
dataframe["%-close-bb_lower-period"] = dataframe["close"] / dataframe["bb_lowerband-period"]
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
dataframe["%-relative_volume-period"] = (
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
)
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
dataframe.ffill(inplace=True)
dataframe.fillna(0, inplace=True)
return dataframe
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
dataframe.fillna(method='ffill', inplace=True)
dataframe.fillna(0, inplace=True)
return dataframe
def feature_engineering_standard(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
dataframe.fillna(method='ffill', inplace=True)
dataframe.fillna(0, inplace=True)
return dataframe
def set_freqai_targets(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
logger.info(f"设置 FreqAI 目标,交易对:{metadata['pair']}")
if "close" not in dataframe.columns:
logger.error("数据框缺少必要的 'close' 列")
raise ValueError("数据框缺少必要的 'close' 列")
try:
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
# 生成 %-volatility 特征
dataframe["%-volatility"] = dataframe["close"].pct_change().rolling(20).std()
# 单一回归目标
# 移除对未来的数据依赖
dataframe["&-buy_rsi"] = ta.RSI(dataframe, timeperiod=14)
# 数据清理
for col in ["&-buy_rsi", "%-volatility"]:
dataframe[col].replace([np.inf, -np.inf], 0, inplace=True)
dataframe[col].fillna(method='ffill', inplace=True)
dataframe[col].fillna(0, inplace=True)
if dataframe[col].isna().any():
logger.warning(f"目标列 {col} 仍包含 NaN检查数据生成逻辑")
except Exception as e:
logger.error(f"创建 FreqAI 目标失败:{str(e)}")
raise
logger.info(f"目标列预览:\n{dataframe[['&-buy_rsi']].head().to_string()}")
return dataframe
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
logger.info(f"处理交易对:{metadata['pair']}")
dataframe = self.freqai.start(dataframe, metadata, self)
# 计算传统指标
dataframe["rsi"] = ta.RSI(dataframe, timeperiod=14)
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
dataframe["bb_lowerband"] = bollinger["lower"]
dataframe["bb_middleband"] = bollinger["mid"]
dataframe["bb_upperband"] = bollinger["upper"]
dataframe["tema"] = ta.TEMA(dataframe, timeperiod=9)
# 生成 up_or_down 信号(非 FreqAI 目标)
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
# 使用历史数据生成 up_or_down 信号
dataframe["up_or_down"] = np.where(
dataframe["close"] > dataframe["close"].shift(1), 1, 0
)
# 动态设置参数
if "&-buy_rsi" in dataframe.columns:
# 派生其他目标
dataframe["&-sell_rsi"] = dataframe["&-buy_rsi"] + 30
dataframe["%-volatility"] = dataframe["close"].pct_change().rolling(20).std()
dataframe["&-stoploss"] = -0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)
dataframe["&-roi_0"] = (dataframe["close"] / dataframe["close"].shift(label_period) - 1).clip(0, 0.2)
# 简化动态参数生成逻辑
dataframe["buy_rsi_pred"] = dataframe["&-buy_rsi"].clip(10, 50)
dataframe["sell_rsi_pred"] = dataframe["&-buy_rsi"] + 30
dataframe["stoploss_pred"] = -0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)
dataframe["roi_0_pred"] = dataframe["&-roi_0"].clip(0.01, 0.2)
# 检查预测值
for col in ["buy_rsi_pred", "sell_rsi_pred", "stoploss_pred", "roi_0_pred", "&-sell_rsi", "&-stoploss", "&-roi_0"]:
if dataframe[col].isna().any():
logger.warning(f"列 {col} 包含 NaN填充为默认值")
dataframe[col].fillna(dataframe[col].mean(), inplace=True)
# 更保守的止损和止盈设置
dataframe["trailing_stop_positive"] = (dataframe["roi_0_pred"] * 0.3).clip(0.01, 0.2)
dataframe["trailing_stop_positive_offset"] = (dataframe["roi_0_pred"] * 0.5).clip(0.01, 0.3)
# 设置策略级参数
self.buy_rsi.value = float(dataframe["buy_rsi_pred"].iloc[-1])
self.sell_rsi.value = float(dataframe["sell_rsi_pred"].iloc[-1])
self.stoploss = float(self.stoploss_param.value)
self.minimal_roi = {
0: float(self.roi_0.value),
15: float(self.roi_15.value),
30: float(self.roi_30.value),
60: 0
}
self.trailing_stop_positive = float(dataframe["trailing_stop_positive"].iloc[-1])
self.trailing_stop_positive_offset = float(dataframe["trailing_stop_positive_offset"].iloc[-1])
logger.info(f"动态参数buy_rsi={self.buy_rsi.value}, sell_rsi={self.sell_rsi.value}, "
f"stoploss={self.stoploss}, trailing_stop_positive={self.trailing_stop_positive}")
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
dataframe.fillna(method='ffill', inplace=True)
dataframe.fillna(0, inplace=True)
logger.info(f"up_or_down 值统计:\n{dataframe['up_or_down'].value_counts().to_string()}")
logger.info(f"do_predict 值统计:\n{dataframe['do_predict'].value_counts().to_string()}")
return dataframe
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
enter_long_conditions = [
qtpylib.crossed_above(df["rsi"], df["buy_rsi_pred"]),
df["volume"] > 0
]
if enter_long_conditions:
df.loc[
reduce(lambda x, y: x & y, enter_long_conditions),
["enter_long", "enter_tag"]
] = (1, "long")
return df
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
exit_long_conditions = [
qtpylib.crossed_above(df["rsi"], df["sell_rsi_pred"]),
df["volume"] > 0
]
if exit_long_conditions:
df.loc[
reduce(lambda x, y: x & y, exit_long_conditions),
"exit_long"
] = 1
return df
def confirm_trade_entry(
self, pair: str, order_type: str, amount: float, rate: float,
time_in_force: str, current_time, entry_tag, side: str, **kwargs
) -> bool:
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = df.iloc[-1].squeeze()
if side == "long":
if rate > (last_candle["close"] * (1 + 0.0025)):
return False
return True