up
Some checks are pending
Update Docker Hub Description / dockerHubDescription (push) Waiting to run
Some checks are pending
Update Docker Hub Description / dockerHubDescription (push) Waiting to run
This commit is contained in:
parent
872bfe4078
commit
c145d5d452
@ -145,7 +145,7 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
||||
# 使用历史数据生成 up_or_down 信号
|
||||
dataframe["up_or_down"] = np.where(
|
||||
dataframe["close"] > dataframe["close"].shift(label_period), 1, 0
|
||||
dataframe["close"] > dataframe["close"].shift(1), 1, 0
|
||||
)
|
||||
|
||||
# 动态设置参数
|
||||
@ -154,25 +154,13 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
dataframe["&-sell_rsi"] = dataframe["&-buy_rsi"] + 30
|
||||
dataframe["%-volatility"] = dataframe["close"].pct_change().rolling(20).std()
|
||||
dataframe["&-stoploss"] = -0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)
|
||||
dataframe["&-roi_0"] = (dataframe["close"].shift(-label_period) / dataframe["close"] - 1).clip(0, 0.2)
|
||||
dataframe["&-roi_0"] = (dataframe["close"] / dataframe["close"].shift(label_period) - 1).clip(0, 0.2)
|
||||
|
||||
# 限制预测值,添加平滑
|
||||
dataframe["buy_rsi_pred"] = dataframe["&-buy_rsi"].rolling(5).mean().clip(10, 50)
|
||||
dataframe["buy_rsi_pred"].fillna(dataframe["buy_rsi_pred"].mean(), inplace=True)
|
||||
if dataframe["buy_rsi_pred"].isna().any():
|
||||
logger.warning("buy_rsi_pred 列包含 NaN,已填充为默认值")
|
||||
dataframe["sell_rsi_pred"] = dataframe["&-sell_rsi"].rolling(5).mean().clip(50, 90)
|
||||
dataframe["sell_rsi_pred"].fillna(dataframe["sell_rsi_pred"].mean(), inplace=True)
|
||||
if dataframe["sell_rsi_pred"].isna().any():
|
||||
logger.warning("sell_rsi_pred 列包含 NaN,已填充为默认值")
|
||||
dataframe["stoploss_pred"] = dataframe["&-stoploss"].clip(-0.35, -0.1)
|
||||
dataframe["stoploss_pred"].fillna(dataframe["stoploss_pred"].mean(), inplace=True)
|
||||
if dataframe["stoploss_pred"].isna().any():
|
||||
logger.warning("stoploss_pred 列包含 NaN,已填充为默认值")
|
||||
# 简化动态参数生成逻辑
|
||||
dataframe["buy_rsi_pred"] = dataframe["&-buy_rsi"].clip(10, 50)
|
||||
dataframe["sell_rsi_pred"] = dataframe["&-buy_rsi"] + 30
|
||||
dataframe["stoploss_pred"] = -0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)
|
||||
dataframe["roi_0_pred"] = dataframe["&-roi_0"].clip(0.01, 0.2)
|
||||
dataframe["roi_0_pred"].fillna(dataframe["roi_0_pred"].mean(), inplace=True)
|
||||
if dataframe["roi_0_pred"].isna().any():
|
||||
logger.warning("roi_0_pred 列包含 NaN,已填充为默认值")
|
||||
|
||||
# 检查预测值
|
||||
for col in ["buy_rsi_pred", "sell_rsi_pred", "stoploss_pred", "roi_0_pred", "&-sell_rsi", "&-stoploss", "&-roi_0"]:
|
||||
@ -180,9 +168,9 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
logger.warning(f"列 {col} 包含 NaN,填充为默认值")
|
||||
dataframe[col].fillna(dataframe[col].mean(), inplace=True)
|
||||
|
||||
# 动态追踪止盈
|
||||
dataframe["trailing_stop_positive"] = (dataframe["roi_0_pred"] * 0.5).clip(0.01, 0.3)
|
||||
dataframe["trailing_stop_positive_offset"] = (dataframe["roi_0_pred"] * 0.75).clip(0.02, 0.4)
|
||||
# 更保守的止损和止盈设置
|
||||
dataframe["trailing_stop_positive"] = (dataframe["roi_0_pred"] * 0.3).clip(0.01, 0.2)
|
||||
dataframe["trailing_stop_positive_offset"] = (dataframe["roi_0_pred"] * 0.5).clip(0.01, 0.3)
|
||||
|
||||
# 设置策略级参数
|
||||
self.buy_rsi.value = float(dataframe["buy_rsi_pred"].iloc[-1])
|
||||
@ -212,10 +200,7 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
enter_long_conditions = [
|
||||
qtpylib.crossed_above(df["rsi"], df["buy_rsi_pred"]),
|
||||
df["tema"] > df["tema"].shift(1),
|
||||
df["volume"] > 0,
|
||||
df["do_predict"] == 1,
|
||||
df["up_or_down"] == 1
|
||||
df["volume"] > 0
|
||||
]
|
||||
if enter_long_conditions:
|
||||
df.loc[
|
||||
@ -227,10 +212,7 @@ class FreqaiExampleStrategy(IStrategy):
|
||||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
exit_long_conditions = [
|
||||
qtpylib.crossed_above(df["rsi"], df["sell_rsi_pred"]),
|
||||
(df["close"] < df["close"].shift(1) * 0.97),
|
||||
df["volume"] > 0,
|
||||
df["do_predict"] == 1,
|
||||
df["up_or_down"] == 0
|
||||
df["volume"] > 0
|
||||
]
|
||||
if exit_long_conditions:
|
||||
df.loc[
|
||||
|
||||
233
请啊!
Normal file
233
请啊!
Normal file
@ -0,0 +1,233 @@
|
||||
import logging
|
||||
import numpy as np
|
||||
from functools import reduce
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from technical import qtpylib
|
||||
from freqtrade.strategy import IStrategy, IntParameter, DecimalParameter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class FreqaiExampleStrategy(IStrategy):
|
||||
# 移除硬编码的 minimal_roi 和 stoploss,改为动态适配
|
||||
minimal_roi = {} # 将在 populate_indicators 中动态生成
|
||||
stoploss = 0.0 # 将在 populate_indicators 中动态设置
|
||||
trailing_stop = True
|
||||
process_only_new_candles = True
|
||||
use_exit_signal = True
|
||||
startup_candle_count: int = 40
|
||||
can_short = False
|
||||
|
||||
# 参数定义:FreqAI 动态适配 buy_rsi 和 sell_rsi,禁用 Hyperopt 优化
|
||||
buy_rsi = IntParameter(low=10, high=50, default=27, space="buy", optimize=False, load=True)
|
||||
sell_rsi = IntParameter(low=50, high=90, default=59, space="sell", optimize=False, load=True)
|
||||
|
||||
# 为 Hyperopt 优化添加 ROI 和 stoploss 参数
|
||||
roi_0 = DecimalParameter(low=0.01, high=0.2, default=0.038, space="roi", optimize=True, load=True)
|
||||
roi_15 = DecimalParameter(low=0.005, high=0.1, default=0.027, space="roi", optimize=True, load=True)
|
||||
roi_30 = DecimalParameter(low=0.001, high=0.05, default=0.009, space="roi", optimize=True, load=True)
|
||||
stoploss_param = DecimalParameter(low=-0.35, high=-0.1, default=-0.182, space="stoploss", optimize=True, load=True)
|
||||
|
||||
# FreqAI 配置
|
||||
freqai_info = {
|
||||
"model": "LightGBMRegressor",
|
||||
"feature_parameters": {
|
||||
"include_timeframes": ["5m", "15m", "1h"],
|
||||
"include_corr_pairlist": [],
|
||||
"label_period_candles": 12,
|
||||
"include_shifted_candles": 3,
|
||||
},
|
||||
"data_split_parameters": {
|
||||
"test_size": 0.2,
|
||||
"shuffle": False,
|
||||
},
|
||||
"model_training_parameters": {
|
||||
"n_estimators": 100,
|
||||
"learning_rate": 0.1,
|
||||
"num_leaves": 31,
|
||||
"verbose": -1,
|
||||
},
|
||||
}
|
||||
|
||||
plot_config = {
|
||||
"main_plot": {},
|
||||
"subplots": {
|
||||
"&-buy_rsi": {"&-buy_rsi": {"color": "green"}},
|
||||
"&-sell_rsi": {"&-sell_rsi": {"color": "red"}},
|
||||
"&-stoploss": {"&-stoploss": {"color": "purple"}},
|
||||
"&-roi_0": {"&-roi_0": {"color": "orange"}},
|
||||
"do_predict": {"do_predict": {"color": "brown"}},
|
||||
},
|
||||
}
|
||||
|
||||
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int, metadata: dict, **kwargs) -> DataFrame:
|
||||
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||||
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
|
||||
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=period, stds=2.2)
|
||||
dataframe["bb_lowerband-period"] = bollinger["lower"]
|
||||
dataframe["bb_middleband-period"] = bollinger["mid"]
|
||||
dataframe["bb_upperband-period"] = bollinger["upper"]
|
||||
dataframe["%-bb_width-period"] = (
|
||||
dataframe["bb_upperband-period"] - dataframe["bb_lowerband-period"]
|
||||
) / dataframe["bb_middleband-period"]
|
||||
dataframe["%-close-bb_lower-period"] = dataframe["close"] / dataframe["bb_lowerband-period"]
|
||||
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
||||
dataframe["%-relative_volume-period"] = (
|
||||
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
|
||||
)
|
||||
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
|
||||
dataframe.ffill(inplace=True)
|
||||
dataframe.fillna(0, inplace=True)
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||
dataframe["%-raw_price"] = dataframe["close"]
|
||||
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
|
||||
dataframe.fillna(method='ffill', inplace=True)
|
||||
dataframe.fillna(0, inplace=True)
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_standard(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
|
||||
dataframe.fillna(method='ffill', inplace=True)
|
||||
dataframe.fillna(0, inplace=True)
|
||||
return dataframe
|
||||
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
logger.info(f"设置 FreqAI 目标,交易对:{metadata['pair']}")
|
||||
if "close" not in dataframe.columns:
|
||||
logger.error("数据框缺少必要的 'close' 列")
|
||||
raise ValueError("数据框缺少必要的 'close' 列")
|
||||
|
||||
try:
|
||||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
||||
# 生成 %-volatility 特征
|
||||
dataframe["%-volatility"] = dataframe["close"].pct_change().rolling(20).std()
|
||||
|
||||
# 单一回归目标
|
||||
# 移除对未来的数据依赖
|
||||
dataframe["&-buy_rsi"] = ta.RSI(dataframe, timeperiod=14)
|
||||
|
||||
# 数据清理
|
||||
for col in ["&-buy_rsi", "%-volatility"]:
|
||||
dataframe[col].replace([np.inf, -np.inf], 0, inplace=True)
|
||||
dataframe[col].fillna(method='ffill', inplace=True)
|
||||
dataframe[col].fillna(0, inplace=True)
|
||||
if dataframe[col].isna().any():
|
||||
logger.warning(f"目标列 {col} 仍包含 NaN,检查数据生成逻辑")
|
||||
except Exception as e:
|
||||
logger.error(f"创建 FreqAI 目标失败:{str(e)}")
|
||||
raise
|
||||
|
||||
logger.info(f"目标列预览:\n{dataframe[['&-buy_rsi']].head().to_string()}")
|
||||
return dataframe
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
logger.info(f"处理交易对:{metadata['pair']}")
|
||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||
|
||||
# 计算传统指标
|
||||
dataframe["rsi"] = ta.RSI(dataframe, timeperiod=14)
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe["bb_lowerband"] = bollinger["lower"]
|
||||
dataframe["bb_middleband"] = bollinger["mid"]
|
||||
dataframe["bb_upperband"] = bollinger["upper"]
|
||||
dataframe["tema"] = ta.TEMA(dataframe, timeperiod=9)
|
||||
|
||||
# 生成 up_or_down 信号(非 FreqAI 目标)
|
||||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
||||
# 使用历史数据生成 up_or_down 信号
|
||||
dataframe["up_or_down"] = np.where(
|
||||
dataframe["close"] > dataframe["close"].shift(1), 1, 0
|
||||
)
|
||||
|
||||
# 动态设置参数
|
||||
if "&-buy_rsi" in dataframe.columns:
|
||||
# 派生其他目标
|
||||
dataframe["&-sell_rsi"] = dataframe["&-buy_rsi"] + 30
|
||||
dataframe["%-volatility"] = dataframe["close"].pct_change().rolling(20).std()
|
||||
dataframe["&-stoploss"] = -0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)
|
||||
dataframe["&-roi_0"] = (dataframe["close"] / dataframe["close"].shift(label_period) - 1).clip(0, 0.2)
|
||||
|
||||
# 简化动态参数生成逻辑
|
||||
dataframe["buy_rsi_pred"] = dataframe["&-buy_rsi"].clip(10, 50)
|
||||
dataframe["sell_rsi_pred"] = dataframe["&-buy_rsi"] + 30
|
||||
dataframe["stoploss_pred"] = -0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)
|
||||
dataframe["roi_0_pred"] = dataframe["&-roi_0"].clip(0.01, 0.2)
|
||||
|
||||
# 检查预测值
|
||||
for col in ["buy_rsi_pred", "sell_rsi_pred", "stoploss_pred", "roi_0_pred", "&-sell_rsi", "&-stoploss", "&-roi_0"]:
|
||||
if dataframe[col].isna().any():
|
||||
logger.warning(f"列 {col} 包含 NaN,填充为默认值")
|
||||
dataframe[col].fillna(dataframe[col].mean(), inplace=True)
|
||||
|
||||
# 更保守的止损和止盈设置
|
||||
dataframe["trailing_stop_positive"] = (dataframe["roi_0_pred"] * 0.3).clip(0.01, 0.2)
|
||||
dataframe["trailing_stop_positive_offset"] = (dataframe["roi_0_pred"] * 0.5).clip(0.01, 0.3)
|
||||
|
||||
# 设置策略级参数
|
||||
self.buy_rsi.value = float(dataframe["buy_rsi_pred"].iloc[-1])
|
||||
self.sell_rsi.value = float(dataframe["sell_rsi_pred"].iloc[-1])
|
||||
self.stoploss = float(self.stoploss_param.value)
|
||||
self.minimal_roi = {
|
||||
0: float(self.roi_0.value),
|
||||
15: float(self.roi_15.value),
|
||||
30: float(self.roi_30.value),
|
||||
60: 0
|
||||
}
|
||||
self.trailing_stop_positive = float(dataframe["trailing_stop_positive"].iloc[-1])
|
||||
self.trailing_stop_positive_offset = float(dataframe["trailing_stop_positive_offset"].iloc[-1])
|
||||
|
||||
logger.info(f"动态参数:buy_rsi={self.buy_rsi.value}, sell_rsi={self.sell_rsi.value}, "
|
||||
f"stoploss={self.stoploss}, trailing_stop_positive={self.trailing_stop_positive}")
|
||||
|
||||
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
|
||||
dataframe.fillna(method='ffill', inplace=True)
|
||||
dataframe.fillna(0, inplace=True)
|
||||
|
||||
logger.info(f"up_or_down 值统计:\n{dataframe['up_or_down'].value_counts().to_string()}")
|
||||
logger.info(f"do_predict 值统计:\n{dataframe['do_predict'].value_counts().to_string()}")
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
enter_long_conditions = [
|
||||
qtpylib.crossed_above(df["rsi"], df["buy_rsi_pred"]),
|
||||
df["volume"] > 0
|
||||
]
|
||||
if enter_long_conditions:
|
||||
df.loc[
|
||||
reduce(lambda x, y: x & y, enter_long_conditions),
|
||||
["enter_long", "enter_tag"]
|
||||
] = (1, "long")
|
||||
return df
|
||||
|
||||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
exit_long_conditions = [
|
||||
qtpylib.crossed_above(df["rsi"], df["sell_rsi_pred"]),
|
||||
df["volume"] > 0
|
||||
]
|
||||
if exit_long_conditions:
|
||||
df.loc[
|
||||
reduce(lambda x, y: x & y, exit_long_conditions),
|
||||
"exit_long"
|
||||
] = 1
|
||||
return df
|
||||
|
||||
def confirm_trade_entry(
|
||||
self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, current_time, entry_tag, side: str, **kwargs
|
||||
) -> bool:
|
||||
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
last_candle = df.iloc[-1].squeeze()
|
||||
if side == "long":
|
||||
if rate > (last_candle["close"] * (1 + 0.0025)):
|
||||
return False
|
||||
return True
|
||||
Loading…
x
Reference in New Issue
Block a user