全新的策略

This commit is contained in:
zhangkun9038@dingtalk.com 2025-08-30 11:29:47 +08:00
parent 8d140b58c3
commit af2e7d39a4

View File

@ -1,3 +1,57 @@
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="pandas_ta")
from freqtrade.strategy import IStrategy
from pandas import DataFrame
import pandas_ta as ta
from freqtrade.exchange import timeframe_to_minutes
class FreqaiPrimer(IStrategy):
# 策略参数
minimal_roi = {
"0": 0.04, # 4% ROI (10 分钟内)
"60": 0.02, # 2% ROI (1 小时)
"180": 0.01, # 1% ROI (3 小时)
"360": 0.0 # 0% ROI (6 小时)
}
stoploss = -0.015 # 初始止损 -1.5%
trailing_stop = True # 启用追踪止损
trailing_stop_positive = 0.008 # 价格上涨 0.8% 后开始追踪
trailing_stop_positive_offset = 0.01 # 追踪止损偏移量 1%
timeframe = "3m" # 主时间框架为 3 分钟
can_short = False # 禁用做空
# 自定义指标参数
bb_length = 20 # 布林带周期
bb_std = 2.0 # 布林带标准差
rsi_length = 14 # RSI 周期
rsi_overbought = 70 # RSI 超买阈值
rsi_oversold = 30 # RSI 超卖阈值
def informative_pairs(self):
# 定义辅助时间框架
pairs = self.dp.current_whitelist()
return [(pair, '15m') for pair in pairs] + [(pair, '1h') for pair in pairs]
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# 计算 3m 周期的指标
bb_3m = ta.bbands(dataframe['close'], length=self.bb_length, std=self.bb_std)
dataframe['bb_lower_3m'] = bb_3m[f'BBL_{self.bb_length}_{self.bb_std}']
dataframe['bb_upper_3m'] = bb_3m[f'BBU_{self.bb_length}_{self.bb_std}']
dataframe['rsi_3m'] = ta.rsi(dataframe['close'], length=self.rsi_length)
# 成交量过滤
dataframe['volume_ma'] = dataframe['volume'].rolling(20).mean()
# 计算 ATR 用于动态止损
dataframe['atr'] = ta.atr(dataframe['high'], dataframe['low'], dataframe['close'], length=14)
# 获取 15m 数据
df_15m = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe='15m')
bb_15m = ta.bbands(df_15m['close'], length=self.bb_length, std=self.bb_std)
df_15m['bb_lower_15m'] = bb_15m[f'BBL_{self.bb_length}_{self.bb_std}']
df_15m['bb_upper_15m'] = bb_15m[f'BBU_{self.bb_length}_{self.bb_std}']
df_15m['rsi_15m'] = ta.rsi(df_15m['close'], length=self.rsi_length)
@ -5,7 +59,7 @@
df_15m = df_15m[['date', 'bb_lower_15m', 'bb_upper_15m', 'rsi_15m']]
df_15m = df_15m.rename(columns={'date': 'date_15m'})
dataframe = dataframe.merge(df_15m, how='left', left_on='date', right_on='date_15m')
dataframe = dataframe.fillna(method='ffill') # 前向填充缺失值
dataframe = dataframe.fillna(method='ffill')
# 获取 1h 数据
df_1h = self.dp.get_pair_dataframe(pair=metadata['pair'], timeframe='1h')
@ -18,7 +72,7 @@
df_1h = df_1h[['date', 'bb_lower_1h', 'bb_upper_1h', 'rsi_1h']]
df_1h = df_1h.rename(columns={'date': 'date_1h'})
dataframe = dataframe.merge(df_1h, how='left', left_on='date', right_on='date_1h')
dataframe = dataframe.fillna(method='ffill') # 前向填充缺失值
dataframe = dataframe.fillna(method='ffill')
# K线形态看涨吞没
dataframe['bullish_engulfing'] = (
@ -42,7 +96,6 @@
(dataframe['volume'] > dataframe['volume_ma'])
),
'enter_long'] = 1
return dataframe
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
@ -53,7 +106,6 @@
(dataframe['rsi_3m'] > self.rsi_overbought)
),
'exit_long'] = 1
return dataframe
def custom_stoploss(self, pair: str, trade: 'Trade', current_time, current_rate: float,
@ -63,6 +115,5 @@
last_candle = dataframe.iloc[-1]
atr = last_candle['atr']
if atr > 0:
return -1.5 * atr / current_rate # 动态止损为 1.5 倍 ATR
return self.stoploss # 回退到固定止损
return -1.5 * atr / current_rate
return self.stoploss