测试使用 XGBoostClassifier 的效果
This commit is contained in:
parent
60b14a6155
commit
983729d91c
@ -67,7 +67,7 @@
|
||||
"freqaimodel": "CatboostClassifier",
|
||||
"purge_old_models": 2,
|
||||
"train_period_days": 15,
|
||||
"identifier": "test18",
|
||||
"identifier": "test51",
|
||||
"train_period_days": 30,
|
||||
"backtest_period_days": 10,
|
||||
"live_retrain_hours": 0,
|
||||
|
||||
@ -40,14 +40,25 @@ services:
|
||||
# --strategy FreqaiExampleStrategy
|
||||
# --strategy FreqaiExampleHybridStrategy
|
||||
# --strategy-path /freqtrade/templates
|
||||
# command: >
|
||||
# backtesting
|
||||
# --logfile /freqtrade/user_data/logs/freqtrade.log
|
||||
# --freqaimodel XGBoostRegressor
|
||||
# --config /freqtrade/config_examples/config_freqai.okx.json
|
||||
# --strategy-path /freqtrade/templates
|
||||
# --strategy FreqaiExampleStrategy
|
||||
# --timerange 20250310-20250410
|
||||
# --export trades
|
||||
command: >
|
||||
backtesting
|
||||
hyperopt
|
||||
--logfile /freqtrade/user_data/logs/freqtrade.log
|
||||
--freqaimodel XGBoostRegressor
|
||||
--freqaimodel XGBoostClassifier
|
||||
--config /freqtrade/config_examples/config_freqai.okx.json
|
||||
--strategy-path /freqtrade/templates
|
||||
--strategy FreqaiExampleStrategy
|
||||
--timerange 20250320-20250420
|
||||
--export trades
|
||||
--timerange 20250301-20250420
|
||||
--hyperopt-loss SharpeHyperOptLoss
|
||||
--spaces buy sell roi stoploss trailing
|
||||
-e 200
|
||||
|
||||
|
||||
|
||||
@ -1,293 +1,160 @@
|
||||
import logging
|
||||
from functools import reduce
|
||||
|
||||
import numpy as np
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from technical import qtpylib
|
||||
|
||||
from freqtrade.strategy import IStrategy
|
||||
|
||||
|
||||
from freqtrade.strategy import IntParameter, IStrategy, DecimalParameter
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FreqaiExampleStrategy(IStrategy):
|
||||
"""
|
||||
Example strategy showing how the user connects their own
|
||||
IFreqaiModel to the strategy.
|
||||
|
||||
Warning! This is a showcase of functionality,
|
||||
which means that it is designed to show various functions of FreqAI
|
||||
and it runs on all computers. We use this showcase to help users
|
||||
understand how to build a strategy, and we use it as a benchmark
|
||||
to help debug possible problems.
|
||||
minimal_roi = {
|
||||
"0": DecimalParameter(low=0.01, high=0.05, default=0.02, space="roi", optimize=True, load=True).value,
|
||||
"360": DecimalParameter(low=0.005, high=0.02, default=0.01, space="roi", optimize=True, load=True).value
|
||||
}
|
||||
stoploss = DecimalParameter(low=-0.1, high=-0.02, default=-0.07, space="stoploss", optimize=True, load=True).value
|
||||
trailing_stop = True
|
||||
trailing_stop_positive = 0.01
|
||||
trailing_stop_positive_offset = 0.02
|
||||
process_only_new_candles = True
|
||||
use_exit_signal = True
|
||||
startup_candle_count: int = 40
|
||||
can_short = False
|
||||
|
||||
This means this is *not* meant to be run live in production.
|
||||
"""
|
||||
|
||||
minimal_roi = {"0": 0.1, "240": -1}
|
||||
buy_rsi = IntParameter(low=10, high=50, default=30, space="buy", optimize=True, load=True)
|
||||
sell_rsi = IntParameter(low=50, high=90, default=70, space="sell", optimize=True, load=True)
|
||||
|
||||
plot_config = {
|
||||
"main_plot": {},
|
||||
"subplots": {
|
||||
"&-s_close": {"&-s_close": {"color": "blue"}},
|
||||
"do_predict": {
|
||||
"do_predict": {"color": "brown"},
|
||||
},
|
||||
"&-up_or_down": {"&-up_or_down": {"color": "blue"}},
|
||||
"do_predict": {"do_predict": {"color": "brown"}},
|
||||
},
|
||||
}
|
||||
|
||||
process_only_new_candles = True
|
||||
stoploss = -0.05
|
||||
use_exit_signal = True
|
||||
# this is the maximum period fed to talib (timeframe independent)
|
||||
startup_candle_count: int = 40
|
||||
can_short = False
|
||||
|
||||
def feature_engineering_expand_all(
|
||||
self, dataframe: DataFrame, period: int, metadata: dict, **kwargs
|
||||
) -> DataFrame:
|
||||
"""
|
||||
*Only functional with FreqAI enabled strategies*
|
||||
This function will automatically expand the defined features on the config defined
|
||||
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
|
||||
`include_corr_pairs`. In other words, a single feature defined in this function
|
||||
will automatically expand to a total of
|
||||
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
|
||||
`include_corr_pairs` numbers of features added to the model.
|
||||
|
||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||
|
||||
Access metadata such as the current pair/timeframe with:
|
||||
|
||||
`metadata["pair"]` `metadata["tf"]`
|
||||
|
||||
More details on how these config defined parameters accelerate feature engineering
|
||||
in the documentation at:
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
||||
|
||||
:param dataframe: strategy dataframe which will receive the features
|
||||
:param period: period of the indicator - usage example:
|
||||
:param metadata: metadata of current pair
|
||||
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||
"""
|
||||
plot_config = {
|
||||
"main_plot": {},
|
||||
"subplots": {
|
||||
"&-up_or_down": {"&-up_or_down": {"color": "blue"}},
|
||||
"do_predict": {"do_predict": {"color": "brown"}},
|
||||
},
|
||||
}
|
||||
|
||||
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int, metadata: dict, **kwargs) -> DataFrame:
|
||||
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||||
#dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
|
||||
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
|
||||
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||
|
||||
bollinger = qtpylib.bollinger_bands(
|
||||
qtpylib.typical_price(dataframe), window=period, stds=2.2
|
||||
)
|
||||
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=period, stds=2.2)
|
||||
dataframe["bb_lowerband-period"] = bollinger["lower"]
|
||||
dataframe["bb_middleband-period"] = bollinger["mid"]
|
||||
dataframe["bb_upperband-period"] = bollinger["upper"]
|
||||
|
||||
dataframe["%-bb_width-period"] = (
|
||||
dataframe["bb_upperband-period"] - dataframe["bb_lowerband-period"]
|
||||
) / dataframe["bb_middleband-period"]
|
||||
dataframe["%-close-bb_lower-period"] = dataframe["close"] / dataframe["bb_lowerband-period"]
|
||||
|
||||
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
||||
|
||||
dataframe["%-relative_volume-period"] = (
|
||||
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
|
||||
)
|
||||
|
||||
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
|
||||
dataframe.fillna(method='ffill', inplace=True)
|
||||
dataframe.fillna(0, inplace=True)
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_expand_basic(
|
||||
self, dataframe: DataFrame, metadata: dict, **kwargs
|
||||
) -> DataFrame:
|
||||
"""
|
||||
*Only functional with FreqAI enabled strategies*
|
||||
This function will automatically expand the defined features on the config defined
|
||||
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
|
||||
In other words, a single feature defined in this function
|
||||
will automatically expand to a total of
|
||||
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
|
||||
numbers of features added to the model.
|
||||
|
||||
Features defined here will *not* be automatically duplicated on user defined
|
||||
`indicator_periods_candles`
|
||||
|
||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||
|
||||
Access metadata such as the current pair/timeframe with:
|
||||
|
||||
`metadata["pair"]` `metadata["tf"]`
|
||||
|
||||
More details on how these config defined parameters accelerate feature engineering
|
||||
in the documentation at:
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
||||
|
||||
:param dataframe: strategy dataframe which will receive the features
|
||||
:param metadata: metadata of current pair
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
|
||||
"""
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||
dataframe["%-raw_price"] = dataframe["close"]
|
||||
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
|
||||
dataframe.fillna(method='ffill', inplace=True)
|
||||
dataframe.fillna(0, inplace=True)
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_standard(
|
||||
self, dataframe: DataFrame, metadata: dict, **kwargs
|
||||
) -> DataFrame:
|
||||
"""
|
||||
*Only functional with FreqAI enabled strategies*
|
||||
This optional function will be called once with the dataframe of the base timeframe.
|
||||
This is the final function to be called, which means that the dataframe entering this
|
||||
function will contain all the features and columns created by all other
|
||||
freqai_feature_engineering_* functions.
|
||||
|
||||
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
|
||||
This function is a good place for any feature that should not be auto-expanded upon
|
||||
(e.g. day of the week).
|
||||
|
||||
All features must be prepended with `%` to be recognized by FreqAI internals.
|
||||
|
||||
Access metadata such as the current pair with:
|
||||
|
||||
`metadata["pair"]`
|
||||
|
||||
More details about feature engineering available:
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||
|
||||
:param dataframe: strategy dataframe which will receive the features
|
||||
:param metadata: metadata of current pair
|
||||
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
||||
"""
|
||||
def feature_engineering_standard(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
|
||||
dataframe.fillna(method='ffill', inplace=True)
|
||||
dataframe.fillna(0, inplace=True)
|
||||
return dataframe
|
||||
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
"""
|
||||
*Only functional with FreqAI enabled strategies*
|
||||
Required function to set the targets for the model.
|
||||
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
||||
|
||||
Access metadata such as the current pair with:
|
||||
|
||||
`metadata["pair"]`
|
||||
|
||||
More details about feature engineering available:
|
||||
|
||||
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
||||
|
||||
:param dataframe: strategy dataframe which will receive the targets
|
||||
:param metadata: metadata of current pair
|
||||
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
||||
"""
|
||||
dataframe["&-s_close"] = (
|
||||
dataframe["close"]
|
||||
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
.mean()
|
||||
/ dataframe["close"]
|
||||
- 1
|
||||
)
|
||||
|
||||
# Classifiers are typically set up with strings as targets:
|
||||
# df['&s-up_or_down'] = np.where( df["close"].shift(-100) >
|
||||
# df["close"], 'up', 'down')
|
||||
|
||||
# If user wishes to use multiple targets, they can add more by
|
||||
# appending more columns with '&'. User should keep in mind that multi targets
|
||||
# requires a multioutput prediction model such as
|
||||
# freqai/prediction_models/CatboostRegressorMultiTarget.py,
|
||||
# freqtrade trade --freqaimodel CatboostRegressorMultiTarget
|
||||
|
||||
# df["&-s_range"] = (
|
||||
# df["close"]
|
||||
# .shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
# .rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
# .max()
|
||||
# -
|
||||
# df["close"]
|
||||
# .shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
# .rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
||||
# .min()
|
||||
# )
|
||||
|
||||
logger.info(f"Setting FreqAI targets for pair: {metadata['pair']}")
|
||||
if "close" not in dataframe.columns:
|
||||
logger.error("Required 'close' column missing in dataframe")
|
||||
raise ValueError("Required 'close' column missing in dataframe")
|
||||
try:
|
||||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
||||
dataframe["&-up_or_down"] = np.where(
|
||||
dataframe["close"].shift(-label_period) > dataframe["close"],
|
||||
"up",
|
||||
"down"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to create &-up_or_down column: {str(e)}")
|
||||
raise
|
||||
logger.info(f"Target column head:\n{dataframe[['&-up_or_down']].head().to_string()}")
|
||||
return dataframe
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
# All indicators must be populated by feature_engineering_*() functions
|
||||
|
||||
# the model will return all labels created by user in `set_freqai_targets()`
|
||||
# (& appended targets), an indication of whether or not the prediction should be accepted,
|
||||
# the target mean/std values for each of the labels created by user in
|
||||
# `set_freqai_targets()` for each training period.
|
||||
|
||||
logger.info(f"Processing pair: {metadata['pair']}")
|
||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||
|
||||
dataframe["rsi"] = ta.RSI(dataframe, timeperiod=14)
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe["bb_lowerband"] = bollinger["lower"]
|
||||
dataframe["bb_middleband"] = bollinger["mid"]
|
||||
dataframe["bb_upperband"] = bollinger["upper"]
|
||||
dataframe["tema"] = ta.TEMA(dataframe, timeperiod=9)
|
||||
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
|
||||
dataframe.fillna(method='ffill', inplace=True)
|
||||
dataframe.fillna(0, inplace=True)
|
||||
if "&-up_or_down" in dataframe.columns:
|
||||
logger.info(f"&-up_or_down value counts:\n{dataframe['&-up_or_down'].value_counts().to_string()}")
|
||||
logger.info(f"do_predict value counts:\n{dataframe['do_predict'].value_counts().to_string()}")
|
||||
return dataframe
|
||||
|
||||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
enter_long_conditions = [
|
||||
qtpylib.crossed_above(df["rsi"], self.buy_rsi.value),
|
||||
df["tema"] > df["tema"].shift(1),
|
||||
df["volume"] > 0,
|
||||
df["do_predict"] == 1,
|
||||
df["&-s_close"] > 0.01,
|
||||
df["&-up_or_down"] == "up"
|
||||
#df["%-bb_width-period_4h"] > 0.05
|
||||
]
|
||||
|
||||
if enter_long_conditions:
|
||||
df.loc[
|
||||
reduce(lambda x, y: x & y, enter_long_conditions), ["enter_long", "enter_tag"]
|
||||
reduce(lambda x, y: x & y, enter_long_conditions),
|
||||
["enter_long", "enter_tag"]
|
||||
] = (1, "long")
|
||||
|
||||
enter_short_conditions = [
|
||||
df["do_predict"] == 1,
|
||||
df["&-s_close"] < -0.01,
|
||||
]
|
||||
|
||||
if enter_short_conditions:
|
||||
df.loc[
|
||||
reduce(lambda x, y: x & y, enter_short_conditions), ["enter_short", "enter_tag"]
|
||||
] = (1, "short")
|
||||
|
||||
return df
|
||||
|
||||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
exit_long_conditions = [df["do_predict"] == 1, df["&-s_close"] < 0]
|
||||
exit_long_conditions = [
|
||||
qtpylib.crossed_above(df["rsi"], self.sell_rsi.value),
|
||||
(df["close"] < df["close"].shift(1) * 0.97),
|
||||
df["volume"] > 0,
|
||||
df["do_predict"] == 1,
|
||||
df["&-up_or_down"] == "down"
|
||||
]
|
||||
if exit_long_conditions:
|
||||
df.loc[reduce(lambda x, y: x & y, exit_long_conditions), "exit_long"] = 1
|
||||
|
||||
exit_short_conditions = [df["do_predict"] == 1, df["&-s_close"] > 0]
|
||||
if exit_short_conditions:
|
||||
df.loc[reduce(lambda x, y: x & y, exit_short_conditions), "exit_short"] = 1
|
||||
|
||||
df.loc[
|
||||
reduce(lambda x, y: x & y, exit_long_conditions),
|
||||
"exit_long"
|
||||
] = 1
|
||||
return df
|
||||
|
||||
def confirm_trade_entry(
|
||||
self,
|
||||
pair: str,
|
||||
order_type: str,
|
||||
amount: float,
|
||||
rate: float,
|
||||
time_in_force: str,
|
||||
current_time,
|
||||
entry_tag,
|
||||
side: str,
|
||||
**kwargs,
|
||||
self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, current_time, entry_tag, side: str, **kwargs
|
||||
) -> bool:
|
||||
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
last_candle = df.iloc[-1].squeeze()
|
||||
|
||||
if side == "long":
|
||||
if rate > (last_candle["close"] * (1 + 0.0025)):
|
||||
return False
|
||||
else:
|
||||
if rate < (last_candle["close"] * (1 - 0.0025)):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user