计算 buy_rsi_pred 并清理 NaN 值
Some checks are pending
Update Docker Hub Description / dockerHubDescription (push) Waiting to run

This commit is contained in:
zhangkun9038@dingtalk.com 2025-04-28 12:31:10 +08:00
parent 328769e0e1
commit 64e2edfa4e

View File

@ -104,7 +104,7 @@ class FreqaiExampleStrategy(IStrategy):
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
dataframe.replace([np.inf, -np.inf], 0, inplace=True)
dataframe.fillna(method='ffill', inplace=True)
dataframe.ffill(inplace=True)
dataframe.fillna(0, inplace=True)
return dataframe
@ -167,16 +167,27 @@ class FreqaiExampleStrategy(IStrategy):
# 简化动态参数生成逻辑
# 简化 buy_rsi 和 sell_rsi 的生成逻辑
# 计算 buy_rsi_pred 并清理 NaN 值
dataframe["buy_rsi_pred"] = dataframe["&-buy_rsi"].rolling(window=10).mean().clip(20, 40)
dataframe["buy_rsi_pred"] = dataframe["buy_rsi_pred"].fillna(dataframe["buy_rsi_pred"].mean())
# 计算 sell_rsi_pred 并清理 NaN 值
dataframe["sell_rsi_pred"] = dataframe["buy_rsi_pred"] + 20
dataframe["sell_rsi_pred"] = dataframe["sell_rsi_pred"].fillna(dataframe["sell_rsi_pred"].mean())
# 计算 stoploss_pred 并清理 NaN 值
dataframe["stoploss_pred"] = -0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)
dataframe["stoploss_pred"] = dataframe["stoploss_pred"].fillna(dataframe["stoploss_pred"].mean())
# 计算 roi_0_pred 并清理 NaN 值
dataframe["roi_0_pred"] = dataframe["&-roi_0"].clip(0.01, 0.2)
dataframe["roi_0_pred"] = dataframe["roi_0_pred"].fillna(dataframe["roi_0_pred"].mean())
# 检查预测值
for col in ["buy_rsi_pred", "sell_rsi_pred", "stoploss_pred", "roi_0_pred", "&-sell_rsi", "&-stoploss", "&-roi_0"]:
if dataframe[col].isna().any():
logger.warning(f"{col} 包含 NaN填充为默认值")
dataframe[col].fillna(dataframe[col].mean(), inplace=True)
dataframe[col] = dataframe[col].fillna(dataframe[col].mean())
# 更保守的止损和止盈设置
dataframe["trailing_stop_positive"] = (dataframe["roi_0_pred"] * 0.3).clip(0.01, 0.2)