first add
This commit is contained in:
parent
c03aa6607b
commit
2ef8de5982
128
config_examples/freqaiprimer.json
Normal file
128
config_examples/freqaiprimer.json
Normal file
@ -0,0 +1,128 @@
|
||||
{
|
||||
"$schema": "https://schema.freqtrade.io/schema.json",
|
||||
"trading_mode": "spot",
|
||||
"margin_mode": "isolated",
|
||||
"max_open_trades": 4,
|
||||
"stake_currency": "USDT",
|
||||
"stake_amount": 150,
|
||||
"startup_candle_count": 30,
|
||||
"tradable_balance_ratio": 1,
|
||||
"fiat_display_currency": "USD",
|
||||
"dry_run": true,
|
||||
"timeframe": "3m",
|
||||
"dry_run_wallet": 1000,
|
||||
"cancel_open_orders_on_exit": true,
|
||||
"stoploss": -0.23,
|
||||
"use_exit_signal": true,
|
||||
"unfilledtimeout": {
|
||||
"entry": 5,
|
||||
"exit": 15
|
||||
},
|
||||
"exchange": {
|
||||
"name": "okx",
|
||||
"key": "eca767d4-fda5-4a1b-bb28-49ae18093307",
|
||||
"secret": "8CA3628A556ED137977DB298D37BC7F3",
|
||||
"enable_ws": false,
|
||||
"ccxt_config": {
|
||||
"enableRateLimit": true,
|
||||
"rateLimit": 500,
|
||||
"options": {
|
||||
"defaultType": "spot"
|
||||
}
|
||||
},
|
||||
"ccxt_async_config": {
|
||||
"enableRateLimit": true,
|
||||
"rateLimit": 500,
|
||||
"timeout": 20000
|
||||
},
|
||||
"pair_whitelist": [
|
||||
"OKB/USDT"
|
||||
],
|
||||
"pair_blacklist": []
|
||||
},
|
||||
"entry_pricing": {
|
||||
"price_side": "same",
|
||||
"use_order_book": true,
|
||||
"order_book_top": 1,
|
||||
"price_last_balance": 0.0,
|
||||
"check_depth_of_market": {
|
||||
"enabled": false,
|
||||
"bids_to_ask_delta": 1
|
||||
}
|
||||
},
|
||||
"exit_pricing": {
|
||||
"price_side": "other",
|
||||
"use_order_book": true,
|
||||
"order_book_top": 1
|
||||
},
|
||||
"pairlists": [
|
||||
{
|
||||
"method": "StaticPairList"
|
||||
}
|
||||
],
|
||||
"freqai": {
|
||||
"enabled": true,
|
||||
"identifier": "test175",
|
||||
"freqaimodel": "XGBoostRegressor",
|
||||
"model_path": "/freqtrade/user_data/models",
|
||||
"save_backtesting_prediction": true,
|
||||
"purge_old_models": true,
|
||||
"load_trained_model": true,
|
||||
"train_period_days": 90,
|
||||
"backtest_period_days": 10,
|
||||
"live_retrain_hours": 0,
|
||||
"include_predictions_in_final_dataframe": true,
|
||||
"data_kitchen": {
|
||||
"fillna": "ffill",
|
||||
"feature_parameters": {
|
||||
"DI_threshold": 0.5,
|
||||
"weight_factor": 0.9
|
||||
}
|
||||
},
|
||||
"feature_parameters": {
|
||||
"include_timeframes": ["5m", "15m", "1h"],
|
||||
"include_corr_pairlist": ["BTC/USDT", "ETH/USDT"],
|
||||
"label_period_candles": 12,
|
||||
"include_shifted_candles": 3,
|
||||
"indicator_periods_candles": [10, 20, 50],
|
||||
"plot_feature_importances": 1,
|
||||
"feature_selection": {
|
||||
"method": "none"
|
||||
}
|
||||
},
|
||||
"data_split_parameters": {
|
||||
"test_size": 0.2,
|
||||
"shuffle": false,
|
||||
"random_state": 42
|
||||
},
|
||||
"model_training_parameters": {
|
||||
"n_estimators": 200,
|
||||
"learning_rate": 0.05,
|
||||
"max_depth": 6,
|
||||
"subsample": 0.8,
|
||||
"colsample_bytree": 0.8,
|
||||
"reg_alpha": 0.1,
|
||||
"reg_lambda": 1.0
|
||||
},
|
||||
},
|
||||
"api_server": {
|
||||
"enabled": true,
|
||||
"listen_ip_address": "0.0.0.0",
|
||||
"listen_port": 8080,
|
||||
"verbosity": "error",
|
||||
"enable_openapi": false,
|
||||
"jwt_secret_key": "6a599ab046dbb419014807dffd7b8823bfa7e5df56b17d545485deb87331b4ca",
|
||||
"ws_token": "6O5pBDiRigiZrmIsofaE2rkKMJtf9h8zVQ",
|
||||
"CORS_origins": [],
|
||||
"username": "freqAdmin",
|
||||
"password": "admin"
|
||||
},
|
||||
"bot_name": "freqtrade",
|
||||
"initial_state": "running",
|
||||
"force_entry_enable": false,
|
||||
"internals": {
|
||||
"process_throttle_secs": 5,
|
||||
"heartbeat_interval": 20,
|
||||
"loglevel": "DEBUG"
|
||||
}
|
||||
}
|
||||
266
freqtrade/templates/freqaiprimer.py
Normal file
266
freqtrade/templates/freqaiprimer.py
Normal file
@ -0,0 +1,266 @@
|
||||
import logging
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from functools import reduce
|
||||
import talib.abstract as ta
|
||||
from typing import Dict, List, Optional
|
||||
from pandas import DataFrame
|
||||
from technical import qtpylib
|
||||
from freqtrade.strategy import IStrategy, IntParameter, DecimalParameter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class FreqaiPrimer(IStrategy):
|
||||
minimal_roi = {}
|
||||
stoploss = 0.0
|
||||
trailing_stop = True
|
||||
process_only_new_candles = True
|
||||
use_exit_signal = True
|
||||
startup_candle_count: int = 40
|
||||
can_short = False
|
||||
|
||||
# Hyperopt 参数
|
||||
buy_rsi = IntParameter(low=10, high=50, default=27, space="buy", optimize=False, load=True)
|
||||
sell_rsi = IntParameter(low=50, high=90, default=59, space="sell", optimize=False, load=True)
|
||||
roi_0 = DecimalParameter(low=0.01, high=0.2, default=0.038, space="roi", optimize=True, load=True)
|
||||
roi_15 = DecimalParameter(low=0.005, high=0.1, default=0.027, space="roi", optimize=True, load=True)
|
||||
roi_30 = DecimalParameter(low=0.001, high=0.05, default=0.009, space="roi", optimize=True, load=True)
|
||||
stoploss_param = DecimalParameter(low=-0.25, high=-0.05, default=-0.1, space="stoploss", optimize=True, load=True)
|
||||
|
||||
# 保护机制
|
||||
protections = [
|
||||
{"method": "StoplossGuard", "stop_duration": 60, "lookback_period": 120},
|
||||
{"method": "MaxDrawdown", "lookback_period": 120, "max_allowed_drawdown": 0.05}
|
||||
]
|
||||
|
||||
# FreqAI 配置
|
||||
freqai_info = {
|
||||
"model": "LightGBMRegressor",
|
||||
"feature_parameters": {
|
||||
"include_timeframes": ["5m", "15m", "1h"],
|
||||
"include_corr_pairlist": [],
|
||||
"label_period_candles": 12,
|
||||
"include_shifted_candles": 3,
|
||||
},
|
||||
"data_split_parameters": {
|
||||
"test_size": 0.2,
|
||||
"shuffle": False,
|
||||
},
|
||||
"model_training_parameters": {
|
||||
"n_estimators": 100,
|
||||
"learning_rate": 0.1,
|
||||
"num_leaves": 15, # 降低以减少警告
|
||||
"verbose": -1,
|
||||
},
|
||||
}
|
||||
|
||||
plot_config = {
|
||||
"main_plot": {},
|
||||
"subplots": {
|
||||
"&-buy_rsi": {"&-buy_rsi": {"color": "green"}},
|
||||
"&-sell_rsi": {"&-sell_rsi": {"color": "red"}},
|
||||
"&-stoploss": {"&-stoploss": {"color": "purple"}},
|
||||
"&-roi_0": {"&-roi_0": {"color": "orange"}},
|
||||
"do_predict": {"do_predict": {"color": "brown"}},
|
||||
},
|
||||
}
|
||||
def __init__(self, config: Dict):
|
||||
super().__init__(config)
|
||||
# 初始化特征缓存
|
||||
self.feature_cache = {}
|
||||
# 设置日志级别
|
||||
logger.setLevel(logging.DEBUG)
|
||||
|
||||
# 输出模型路径用于调试
|
||||
freqai_model_path = self.config.get("freqai", {}).get("model_path", "/freqtrade/user_data/models")
|
||||
logger.info(f"FreqAI 模型路径:{freqai_model_path}")
|
||||
|
||||
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int, metadata: dict, **kwargs) -> DataFrame:
|
||||
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
||||
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
||||
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
|
||||
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
||||
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=period, stds=2.2)
|
||||
dataframe["bb_lowerband-period"] = bollinger["lower"]
|
||||
dataframe["bb_middleband-period"] = bollinger["mid"]
|
||||
dataframe["bb_upperband-period"] = bollinger["upper"]
|
||||
dataframe["%-bb_width-period"] = (
|
||||
dataframe["bb_upperband-period"] - dataframe["bb_lowerband-period"]
|
||||
) / dataframe["bb_middleband-period"]
|
||||
dataframe["%-close-bb_lower-period"] = dataframe["close"] / dataframe["bb_lowerband-period"]
|
||||
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
||||
dataframe["%-relative_volume-period"] = (
|
||||
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
|
||||
)
|
||||
dataframe = dataframe.replace([np.inf, -np.inf], 0)
|
||||
dataframe = dataframe.ffill()
|
||||
dataframe = dataframe.fillna(0)
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
||||
dataframe["%-raw_volume"] = dataframe["volume"]
|
||||
dataframe["%-raw_price"] = dataframe["close"]
|
||||
dataframe = dataframe.replace([np.inf, -np.inf], 0)
|
||||
dataframe = dataframe.ffill()
|
||||
dataframe = dataframe.fillna(0)
|
||||
return dataframe
|
||||
|
||||
def feature_engineering_standard(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||
dataframe = dataframe.replace([np.inf, -np.inf], 0)
|
||||
dataframe = dataframe.ffill()
|
||||
dataframe = dataframe.fillna(0)
|
||||
return dataframe
|
||||
|
||||
def set_freqai_targets(self, dataframe: DataFrame, metadata: dict, **kwargs) -> DataFrame:
|
||||
logger.info(f"设置 FreqAI 目标,交易对:{metadata['pair']}")
|
||||
if "close" not in dataframe.columns:
|
||||
logger.error("数据框缺少必要的 'close' 列")
|
||||
raise ValueError("数据框缺少必要的 'close' 列")
|
||||
|
||||
try:
|
||||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
||||
dataframe["%-volatility"] = dataframe["close"].pct_change().rolling(20).std()
|
||||
dataframe["&-buy_rsi"] = ta.RSI(dataframe, timeperiod=14).shift(-label_period)
|
||||
|
||||
for col in ["&-buy_rsi", "%-volatility"]:
|
||||
dataframe[col] = dataframe[col].replace([np.inf, -np.inf], 0)
|
||||
dataframe[col] = dataframe[col].ffill()
|
||||
dataframe[col] = dataframe[col].fillna(0)
|
||||
if dataframe[col].isna().any():
|
||||
logger.warning(f"目标列 {col} 仍包含 NaN,检查数据生成逻辑")
|
||||
except Exception as e:
|
||||
logger.error(f"创建 FreqAI 目标失败:{str(e)}")
|
||||
raise
|
||||
|
||||
logger.info(f"目标列预览:\n{dataframe[['&-buy_rsi']].head().to_string()}")
|
||||
return dataframe
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
logger.info(f"处理交易对:{metadata['pair']}")
|
||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||
|
||||
# 计算传统指标
|
||||
dataframe["rsi"] = ta.RSI(dataframe, timeperiod=14)
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe["bb_lowerband"] = bollinger["lower"]
|
||||
dataframe["bb_middleband"] = bollinger["mid"]
|
||||
dataframe["bb_upperband"] = bollinger["upper"]
|
||||
dataframe["tema"] = ta.TEMA(dataframe, timeperiod=9)
|
||||
|
||||
# 生成 up_or_down 信号
|
||||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
||||
dataframe["up_or_down"] = np.where(
|
||||
dataframe["close"].shift(-label_period) > dataframe["close"], 1, 0
|
||||
)
|
||||
|
||||
# 预填充 NaN
|
||||
dataframe = dataframe.ffill()
|
||||
dataframe = dataframe.fillna(0)
|
||||
|
||||
if "&-buy_rsi" in dataframe.columns:
|
||||
# 派生其他目标
|
||||
dataframe["&-sell_rsi"] = dataframe["&-buy_rsi"] + 30
|
||||
dataframe["%-volatility"] = dataframe["close"].pct_change().rolling(20).std()
|
||||
dataframe["&-stoploss"] = -0.1 - (dataframe["%-volatility"] * 10).clip(0, 0.25)
|
||||
dataframe["&-roi_0"] = (dataframe["close"].shift(-label_period) / dataframe["close"] - 1).clip(0, 0.2)
|
||||
|
||||
# 计算预测值并减少 NaN
|
||||
dataframe["buy_rsi_pred"] = dataframe["&-buy_rsi"].rolling(5, min_periods=1).mean().clip(10, 50)
|
||||
dataframe["sell_rsi_pred"] = dataframe["&-sell_rsi"].rolling(5, min_periods=1).mean().clip(50, 90)
|
||||
dataframe["stoploss_pred"] = dataframe["&-stoploss"].clip(-0.25, -0.05)
|
||||
dataframe["roi_0_pred"] = dataframe["&-roi_0"].clip(0.01, 0.2)
|
||||
|
||||
# 处理 NaN
|
||||
for col in ["buy_rsi_pred", "sell_rsi_pred", "stoploss_pred", "roi_0_pred", "&-sell_rsi", "&-stoploss", "&-roi_0"]:
|
||||
if dataframe[col].isna().any():
|
||||
logger.warning(f"列 {col} 包含 NaN,填充为默认值")
|
||||
mean_value = dataframe[col].mean()
|
||||
if pd.isna(mean_value):
|
||||
logger.warning(f"列 {col} 均值仍为 NaN,使用默认值")
|
||||
mean_value = {
|
||||
"buy_rsi_pred": 30,
|
||||
"sell_rsi_pred": 70,
|
||||
"stoploss_pred": -0.1,
|
||||
"roi_0_pred": 0.05,
|
||||
"&-sell_rsi": 70,
|
||||
"&-stoploss": -0.1,
|
||||
"&-roi_0": 0.05
|
||||
}.get(col, 0)
|
||||
dataframe[col] = dataframe[col].fillna(mean_value)
|
||||
|
||||
# 动态追踪止盈
|
||||
dataframe["trailing_stop_positive"] = (dataframe["roi_0_pred"] * 0.5).clip(0.01, 0.3)
|
||||
dataframe["trailing_stop_positive_offset"] = (dataframe["roi_0_pred"] * 0.75).clip(0.02, 0.4)
|
||||
|
||||
# 设置动态参数
|
||||
self.stoploss = float(dataframe["stoploss_pred"].iloc[-1])
|
||||
self.buy_rsi.value = float(dataframe["buy_rsi_pred"].iloc[-1])
|
||||
self.sell_rsi.value = float(dataframe["sell_rsi_pred"].iloc[-1])
|
||||
self.minimal_roi = {
|
||||
0: float(self.roi_0.value),
|
||||
15: float(self.roi_15.value),
|
||||
30: float(self.roi_30.value),
|
||||
60: 0.0
|
||||
}
|
||||
self.trailing_stop_positive = float(dataframe["trailing_stop_positive"].iloc[-1])
|
||||
self.trailing_stop_positive_offset = float(dataframe["trailing_stop_positive_offset"].iloc[-1])
|
||||
|
||||
logger.info(f"minimal_roi 键:{list(self.minimal_roi.keys())}")
|
||||
logger.info(f"动态参数:buy_rsi={self.buy_rsi.value}, sell_rsi={self.sell_rsi.value}, "
|
||||
f"stoploss={self.stoploss}, trailing_stop_positive={self.trailing_stop_positive}")
|
||||
|
||||
dataframe = dataframe.replace([np.inf, -np.inf], 0)
|
||||
dataframe = dataframe.ffill()
|
||||
dataframe = dataframe.fillna(0)
|
||||
|
||||
logger.info(f"up_or_down 值统计:\n{dataframe['up_or_down'].value_counts().to_string()}")
|
||||
logger.info(f"do_predict 值统计:\n{dataframe['do_predict'].value_counts().to_string()}")
|
||||
|
||||
return dataframe
|
||||
|
||||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
enter_long_conditions = [
|
||||
qtpylib.crossed_above(df["rsi"], df["buy_rsi_pred"] + (5 if metadata["pair"] == "BTC/USDT" else 0)),
|
||||
df["tema"] > df["tema"].shift(1),
|
||||
df["volume"] > 0,
|
||||
df["do_predict"] == 1,
|
||||
df["up_or_down"] == 1
|
||||
]
|
||||
if enter_long_conditions:
|
||||
df.loc[
|
||||
reduce(lambda x, y: x & y, enter_long_conditions),
|
||||
["enter_long", "enter_tag"]
|
||||
] = (1, "long")
|
||||
return df
|
||||
|
||||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||
exit_long_conditions = [
|
||||
(qtpylib.crossed_above(df["rsi"], df["sell_rsi_pred"])) |
|
||||
(df["close"] < df["close"].shift(1) * 0.98) |
|
||||
(df["close"] < df["bb_lowerband"]),
|
||||
df["volume"] > 0,
|
||||
df["do_predict"] == 1,
|
||||
df["up_or_down"] == 0
|
||||
]
|
||||
time_exit = (df["date"] >= df["date"].shift(1) + pd.Timedelta(days=1))
|
||||
|
||||
df.loc[
|
||||
(reduce(lambda x, y: x & y, exit_long_conditions)) | time_exit,
|
||||
"exit_long"
|
||||
] = 1
|
||||
return df
|
||||
|
||||
def confirm_trade_entry(
|
||||
self, pair: str, order_type: str, amount: float, rate: float,
|
||||
time_in_force: str, current_time, entry_tag, side: str, **kwargs
|
||||
) -> bool:
|
||||
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||
last_candle = df.iloc[-1].squeeze()
|
||||
if side == "long":
|
||||
if rate > (last_candle["close"] * (1 + 0.001)):
|
||||
return False
|
||||
return True
|
||||
BIN
tools/.backtest.sh.swp
Normal file
BIN
tools/.backtest.sh.swp
Normal file
Binary file not shown.
@ -41,13 +41,18 @@ docker-compose run --rm freqtrade backtesting \
|
||||
--strategy-path /freqtrade/templates \
|
||||
--strategy $STRATEGY_NAME \
|
||||
--timerange $START_DATE-$END_DATE \
|
||||
--breakdown week month \
|
||||
--export trades \
|
||||
--fee 0.0008 \
|
||||
--export trades \
|
||||
--cache none >output.log 2>&1
|
||||
sed -i 's/\x1B\[[0-9;]*m//g' output.log
|
||||
|
||||
backtesting
|
||||
--logfile /freqtrade/user_data/logs/freqtrade.log
|
||||
--freqaimodel LightGBMRegressor
|
||||
--config /freqtrade/config_examples/config_freqai.okx.json
|
||||
--strategy-path /freqtrade/templates
|
||||
--strategy FreqaiExampleStrategy
|
||||
--timerange 20240905-20250420
|
||||
|
||||
#python3 tools/filter.py
|
||||
|
||||
rm ./result/*.json -fr
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user