解决了一个ccxt的bug, okx接口返回内容有baseCcy或者quoteCcy为null, 挂载了一个新的文件替换了容器内的版本, 算是临时解决了,以后要考虑如何持续集成的问题
This commit is contained in:
parent
f815ee89ee
commit
05122af764
8325
ccxt/async_support/okx.py
Normal file
8325
ccxt/async_support/okx.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -31,14 +31,17 @@
|
|||||||
},
|
},
|
||||||
"ccxt_async_config": {
|
"ccxt_async_config": {
|
||||||
"enableRateLimit": true,
|
"enableRateLimit": true,
|
||||||
"rateLimit": 1000,
|
"rateLimit": 500,
|
||||||
"timeout": 20000
|
"timeout": 20000
|
||||||
},
|
},
|
||||||
"pair_whitelist": [
|
"pair_whitelist": [
|
||||||
"BTC/USDT",
|
"BTC/USDT",
|
||||||
"SOL/USDT"
|
"SOL/USDT"
|
||||||
],
|
],
|
||||||
"pair_blacklist": []
|
"pair_blacklist": [
|
||||||
|
"LAYER/USD",
|
||||||
|
"LAYER/USDT"
|
||||||
|
]
|
||||||
},
|
},
|
||||||
"entry_pricing": {
|
"entry_pricing": {
|
||||||
"price_side": "same",
|
"price_side": "same",
|
||||||
@ -67,7 +70,7 @@
|
|||||||
},
|
},
|
||||||
"freqaimodel": "CatboostClassifier",
|
"freqaimodel": "CatboostClassifier",
|
||||||
"purge_old_models": 2,
|
"purge_old_models": 2,
|
||||||
"identifier": "test130",
|
"identifier": "test131",
|
||||||
"train_period_days": 30,
|
"train_period_days": 30,
|
||||||
"backtest_period_days": 10,
|
"backtest_period_days": 10,
|
||||||
"live_retrain_hours": 0,
|
"live_retrain_hours": 0,
|
||||||
|
|||||||
@ -23,6 +23,7 @@ services:
|
|||||||
- "./config_examples:/freqtrade/config_examples"
|
- "./config_examples:/freqtrade/config_examples"
|
||||||
- "./freqtrade/templates:/freqtrade/templates"
|
- "./freqtrade/templates:/freqtrade/templates"
|
||||||
- "./freqtrade/exchange/:/freqtrade/exchange"
|
- "./freqtrade/exchange/:/freqtrade/exchange"
|
||||||
|
- "./ccxt/async_support/okx.py:/home/ftuser/.local/lib/python3.12/site-packages/ccxt/async_support/okx.py"
|
||||||
# Expose api on port 8080 (localhost only)
|
# Expose api on port 8080 (localhost only)
|
||||||
# Please read the https://www.freqtrade.io/en/stable/rest-api/ documentation
|
# Please read the https://www.freqtrade.io/en/stable/rest-api/ documentation
|
||||||
# for more information.
|
# for more information.
|
||||||
|
|||||||
@ -11,9 +11,9 @@ logger = logging.getLogger(__name__)
|
|||||||
|
|
||||||
class FreqaiExampleStrategy(IStrategy):
|
class FreqaiExampleStrategy(IStrategy):
|
||||||
minimal_roi = {
|
minimal_roi = {
|
||||||
"0": 0.076,
|
"0": 0.02,
|
||||||
"7": 0.034,
|
"7": 0.01,
|
||||||
"13": 0.007,
|
"13": 0.005,
|
||||||
"60": 0
|
"60": 0
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -24,29 +24,25 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
startup_candle_count: int = 40
|
startup_candle_count: int = 40
|
||||||
can_short = False
|
can_short = False
|
||||||
|
|
||||||
# Hyperopt 参数
|
|
||||||
buy_rsi = IntParameter(low=10, high=50, default=27, space="buy", optimize=True, load=True)
|
buy_rsi = IntParameter(low=10, high=50, default=27, space="buy", optimize=True, load=True)
|
||||||
sell_rsi = IntParameter(low=50, high=90, default=59, space="sell", optimize=True, load=True)
|
sell_rsi = IntParameter(low=50, high=90, default=59, space="sell", optimize=True, load=True)
|
||||||
roi_0 = DecimalParameter(low=0.01, high=0.2, default=0.038, space="roi", optimize=True, load=True)
|
roi_0 = DecimalParameter(low=0.01, high=0.2, default=0.038, space="roi", optimize=True, load=True)
|
||||||
roi_15 = DecimalParameter(low=0.005, high=0.1, default=0.027, space="roi", optimize=True, load=True)
|
roi_15 = DecimalParameter(low=0.005, high=0.1, default=0.027, space="roi", optimize=True, load=True)
|
||||||
roi_30 = DecimalParameter(low=0.001, high=0.05, default=0.009, space="roi", optimize=True, load=True)
|
roi_30 = DecimalParameter(low=0.001, high=0.05, default=0.009, space="roi", optimize=True, load=True)
|
||||||
stoploss_param = DecimalParameter(low=-0.25, high=-0.05, default=-0.1, space="stoploss", optimize=True, load=True)
|
stoploss_param = DecimalParameter(low=-0.25, high=-0.05, default=-0.1, space="stoploss", optimize=True, load=True)
|
||||||
trailing_stop_positive_offset = DecimalParameter(low=0.01, high=0.5, default=0.02, space="trailing", optimize=True, load=True)
|
trailing_stop_positive_offset = DecimalParameter(low=0.005, high=0.5, default=0.01, space="trailing", optimize=True, load=True)
|
||||||
|
|
||||||
protections = [
|
protections = []
|
||||||
{"method": "StoplossGuard", "stop_duration": 60, "lookback_period": 120},
|
|
||||||
{"method": "MaxDrawdown", "lookback_period": 120, "max_allowed_drawdown": 0.05}
|
|
||||||
]
|
|
||||||
|
|
||||||
freqai_info = {
|
freqai_info = {
|
||||||
"model": "LightGBMRegressor",
|
"model": "LightGBMRegressor",
|
||||||
"feature_parameters": {
|
"feature_parameters": {
|
||||||
"include_timeframes": ["5m"],
|
"include_timeframes": ["5m"],
|
||||||
"include_corr_pairlist": ["SOL/USDT", "BTC/USDT"],
|
"include_corr_pairlist": ["SOL/USDT"],
|
||||||
"label_period_candles": 12,
|
"label_period_candles": 12,
|
||||||
"include_shifted_candles": 0,
|
"include_shifted_candles": 0,
|
||||||
"include_periods": [10, 20],
|
"include_periods": [20],
|
||||||
"DI_threshold": 3.0
|
"DI_threshold": 5.0
|
||||||
},
|
},
|
||||||
"data_split_parameters": {
|
"data_split_parameters": {
|
||||||
"test_size": 0.2,
|
"test_size": 0.2,
|
||||||
@ -62,14 +58,20 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
}
|
}
|
||||||
|
|
||||||
plot_config = {
|
plot_config = {
|
||||||
"main_plot": {},
|
"main_plot": {
|
||||||
|
"close": {"color": "blue"},
|
||||||
|
"bb_lowerband": {"color": "purple"}
|
||||||
|
},
|
||||||
"subplots": {
|
"subplots": {
|
||||||
"&-buy_rsi": {"&-buy_rsi": {"color": "green"}},
|
"&-buy_rsi": {"&-buy_rsi": {"color": "green"}},
|
||||||
"&-sell_rsi": {"&-sell_rsi": {"color": "red"}},
|
"&-sell_rsi": {"&-sell_rsi": {"color": "red"}},
|
||||||
"&-stoploss": {"&-stoploss": {"color": "purple"}},
|
"rsi": {"rsi": {"color": "black"}},
|
||||||
"&-roi_0": {"&-roi_0": {"color": "orange"}},
|
|
||||||
"do_predict": {"do_predict": {"color": "brown"}},
|
"do_predict": {"do_predict": {"color": "brown"}},
|
||||||
},
|
"trade_signals": {
|
||||||
|
"enter_long": {"color": "green", "type": "scatter"},
|
||||||
|
"exit_long": {"color": "red", "type": "scatter"}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int, metadata: dict, **kwargs) -> DataFrame:
|
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int, metadata: dict, **kwargs) -> DataFrame:
|
||||||
@ -130,12 +132,10 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
logger.info(f"DataFrame rows: {len(dataframe)}")
|
logger.info(f"DataFrame rows: {len(dataframe)}")
|
||||||
logger.info(f"Columns before freqai.start: {list(dataframe.columns)}")
|
logger.info(f"Columns before freqai.start: {list(dataframe.columns)}")
|
||||||
|
|
||||||
# 验证输入数据
|
|
||||||
if "close" not in dataframe.columns or dataframe["close"].isna().all():
|
if "close" not in dataframe.columns or dataframe["close"].isna().all():
|
||||||
logger.error(f"DataFrame missing 'close' column or all NaN for pair: {metadata['pair']}")
|
logger.error(f"DataFrame missing 'close' column or all NaN for pair: {metadata['pair']}")
|
||||||
raise ValueError("DataFrame missing valid 'close' column")
|
raise ValueError("DataFrame missing valid 'close' column")
|
||||||
|
|
||||||
# 生成 RSI
|
|
||||||
if len(dataframe) < 14:
|
if len(dataframe) < 14:
|
||||||
logger.warning(f"DataFrame too short ({len(dataframe)} rows), cannot compute rsi")
|
logger.warning(f"DataFrame too short ({len(dataframe)} rows), cannot compute rsi")
|
||||||
dataframe["rsi"] = 50
|
dataframe["rsi"] = 50
|
||||||
@ -143,7 +143,6 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
dataframe["rsi"] = ta.RSI(dataframe, timeperiod=14)
|
dataframe["rsi"] = ta.RSI(dataframe, timeperiod=14)
|
||||||
logger.info(f"rsi stats: {dataframe['rsi'].describe().to_string()}")
|
logger.info(f"rsi stats: {dataframe['rsi'].describe().to_string()}")
|
||||||
|
|
||||||
# 生成 %-volatility
|
|
||||||
if len(dataframe) < 20 or dataframe["close"].isna().any():
|
if len(dataframe) < 20 or dataframe["close"].isna().any():
|
||||||
logger.warning(f"DataFrame too short ({len(dataframe)} rows) or contains NaN in close, cannot compute %-volatility")
|
logger.warning(f"DataFrame too short ({len(dataframe)} rows) or contains NaN in close, cannot compute %-volatility")
|
||||||
dataframe["%-volatility"] = 0
|
dataframe["%-volatility"] = 0
|
||||||
@ -154,7 +153,6 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
dataframe["%-volatility"] = (dataframe["%-volatility"] - dataframe["%-volatility"].mean()) / dataframe["%-volatility"].std()
|
dataframe["%-volatility"] = (dataframe["%-volatility"] - dataframe["%-volatility"].mean()) / dataframe["%-volatility"].std()
|
||||||
logger.info(f"%-volatility stats: {dataframe['%-volatility'].describe().to_string()}")
|
logger.info(f"%-volatility stats: {dataframe['%-volatility'].describe().to_string()}")
|
||||||
|
|
||||||
# 生成 TEMA
|
|
||||||
if len(dataframe) < 9:
|
if len(dataframe) < 9:
|
||||||
logger.warning(f"DataFrame too short ({len(dataframe)} rows), cannot compute tema")
|
logger.warning(f"DataFrame too short ({len(dataframe)} rows), cannot compute tema")
|
||||||
dataframe["tema"] = dataframe["close"]
|
dataframe["tema"] = dataframe["close"]
|
||||||
@ -165,7 +163,6 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
dataframe["tema"] = dataframe["tema"].fillna(dataframe["close"])
|
dataframe["tema"] = dataframe["tema"].fillna(dataframe["close"])
|
||||||
logger.info(f"tema stats: {dataframe['tema'].describe().to_string()}")
|
logger.info(f"tema stats: {dataframe['tema'].describe().to_string()}")
|
||||||
|
|
||||||
# 生成 Bollinger Bands
|
|
||||||
if len(dataframe) < 20:
|
if len(dataframe) < 20:
|
||||||
logger.warning(f"DataFrame too short ({len(dataframe)} rows), cannot compute bb_lowerband")
|
logger.warning(f"DataFrame too short ({len(dataframe)} rows), cannot compute bb_lowerband")
|
||||||
dataframe["bb_lowerband"] = dataframe["close"]
|
dataframe["bb_lowerband"] = dataframe["close"]
|
||||||
@ -177,21 +174,6 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
dataframe["bb_lowerband"] = dataframe["bb_lowerband"].fillna(dataframe["close"])
|
dataframe["bb_lowerband"] = dataframe["bb_lowerband"].fillna(dataframe["close"])
|
||||||
logger.info(f"bb_lowerband stats: {dataframe['bb_lowerband'].describe().to_string()}")
|
logger.info(f"bb_lowerband stats: {dataframe['bb_lowerband'].describe().to_string()}")
|
||||||
|
|
||||||
# 生成 up_or_down
|
|
||||||
label_period = self.freqai_info["feature_parameters"]["label_period_candles"]
|
|
||||||
if len(dataframe) < label_period + 1:
|
|
||||||
logger.warning(f"DataFrame too short ({len(dataframe)} rows), cannot compute up_or_down")
|
|
||||||
dataframe["up_or_down"] = 0
|
|
||||||
else:
|
|
||||||
dataframe["up_or_down"] = np.where(
|
|
||||||
dataframe["close"].shift(-label_period) > dataframe["close"], 1, 0
|
|
||||||
)
|
|
||||||
if dataframe["up_or_down"].isna().any():
|
|
||||||
logger.warning("up_or_down contains NaN, filling with 0")
|
|
||||||
dataframe["up_or_down"] = dataframe["up_or_down"].fillna(0)
|
|
||||||
logger.info(f"up_or_down stats: {dataframe['up_or_down'].describe().to_string()}")
|
|
||||||
|
|
||||||
# 生成其他特征
|
|
||||||
if "date" in dataframe.columns:
|
if "date" in dataframe.columns:
|
||||||
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
||||||
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
||||||
@ -200,7 +182,6 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
dataframe["%-day_of_week"] = 0
|
dataframe["%-day_of_week"] = 0
|
||||||
dataframe["%-hour_of_day"] = 0
|
dataframe["%-hour_of_day"] = 0
|
||||||
|
|
||||||
# 调用 FreqAI
|
|
||||||
try:
|
try:
|
||||||
dataframe = self.freqai.start(dataframe, metadata, self)
|
dataframe = self.freqai.start(dataframe, metadata, self)
|
||||||
logger.info(f"Columns after freqai.start: {list(dataframe.columns)}")
|
logger.info(f"Columns after freqai.start: {list(dataframe.columns)}")
|
||||||
@ -210,26 +191,23 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
dataframe["sell_rsi_pred"] = 80
|
dataframe["sell_rsi_pred"] = 80
|
||||||
dataframe["do_predict"] = 1
|
dataframe["do_predict"] = 1
|
||||||
|
|
||||||
# 检查预测列
|
|
||||||
for col in ["buy_rsi_pred", "sell_rsi_pred"]:
|
for col in ["buy_rsi_pred", "sell_rsi_pred"]:
|
||||||
if col not in dataframe.columns:
|
if col not in dataframe.columns:
|
||||||
logger.error(f"Error: {col} column not generated for pair: {metadata['pair']}")
|
logger.error(f"Error: {col} column not generated for pair: {metadata['pair']}")
|
||||||
dataframe[col] = 50 if col == "buy_rsi_pred" else 80
|
dataframe[col] = 50 if col == "buy_rsi_pred" else 80
|
||||||
logger.info(f"{col} stats: {dataframe[col].describe().to_string()}")
|
logger.info(f"{col} stats: {dataframe[col].describe().to_string()}")
|
||||||
|
|
||||||
# 调试特征分布
|
if "%-bb_width-period_20_SOL/USDT_5m" in dataframe.columns:
|
||||||
if "%-bb_width-period_10_SOL/USDT_5m" in dataframe.columns:
|
if dataframe["%-bb_width-period_20_SOL/USDT_5m"].std() > 0:
|
||||||
if dataframe["%-bb_width-period_10_SOL/USDT_5m"].std() > 0:
|
dataframe["%-bb_width-period_20_SOL/USDT_5m"] = (
|
||||||
dataframe["%-bb_width-period_10_SOL/USDT_5m"] = (
|
dataframe["%-bb_width-period_20_SOL/USDT_5m"] - dataframe["%-bb_width-period_20_SOL/USDT_5m"].mean()
|
||||||
dataframe["%-bb_width-period_10_SOL/USDT_5m"] - dataframe["%-bb_width-period_10_SOL/USDT_5m"].mean()
|
) / dataframe["%-bb_width-period_20_SOL/USDT_5m"].std()
|
||||||
) / dataframe["%-bb_width-period_10_SOL/USDT_5m"].std()
|
logger.info(f"%-bb_width-period_20 stats: {dataframe['%-bb_width-period_20_SOL/USDT_5m'].describe().to_string()}")
|
||||||
logger.info(f"%-bb_width-period_10 stats: {dataframe['%-bb_width-period_10_SOL/USDT_5m'].describe().to_string()}")
|
|
||||||
|
|
||||||
# 动态生成期望的特征列
|
|
||||||
def get_expected_columns(freqai_config: dict) -> list:
|
def get_expected_columns(freqai_config: dict) -> list:
|
||||||
indicators = ["rsi", "bb_width", "pct-change"]
|
indicators = ["rsi", "bb_width", "pct-change"]
|
||||||
periods = freqai_config.get("feature_parameters", {}).get("include_periods", [10, 20])
|
periods = freqai_config.get("feature_parameters", {}).get("include_periods", [20])
|
||||||
pairs = freqai_config.get("include_corr_pairlist", ["SOL/USDT", "BTC/USDT"])
|
pairs = freqai_config.get("include_corr_pairlist", ["SOL/USDT"])
|
||||||
timeframes = freqai_config.get("include_timeframes", ["5m"])
|
timeframes = freqai_config.get("include_timeframes", ["5m"])
|
||||||
shifts = [0]
|
shifts = [0]
|
||||||
expected_columns = ["%-volatility", "%-day_of_week", "%-hour_of_day"]
|
expected_columns = ["%-volatility", "%-day_of_week", "%-hour_of_day"]
|
||||||
@ -248,50 +226,47 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
expected_columns = get_expected_columns(self.freqai_info)
|
expected_columns = get_expected_columns(self.freqai_info)
|
||||||
logger.info(f"Expected feature columns ({len(expected_columns)}): {expected_columns[:10]}...")
|
logger.info(f"Expected feature columns ({len(expected_columns)}): {expected_columns[:10]}...")
|
||||||
|
|
||||||
# 比较特征集
|
|
||||||
actual_columns = list(dataframe.columns)
|
actual_columns = list(dataframe.columns)
|
||||||
missing_columns = [col for col in expected_columns if col not in actual_columns]
|
missing_columns = [col for col in expected_columns if col not in actual_columns]
|
||||||
extra_columns = [col for col in actual_columns if col not in expected_columns and col.startswith("%-")]
|
extra_columns = [col for col in actual_columns if col not in expected_columns and col.startswith("%-")]
|
||||||
logger.info(f"Missing columns ({len(missing_columns)}): {missing_columns}")
|
logger.info(f"Missing columns ({len(missing_columns)}): {missing_columns}")
|
||||||
logger.info(f"Extra columns ({len(extra_columns)}): {extra_columns}")
|
logger.info(f"Extra columns ({len(extra_columns)}): {extra_columns}")
|
||||||
|
|
||||||
# 调试 DI 丢弃预测
|
|
||||||
if "DI_values" in dataframe.columns:
|
if "DI_values" in dataframe.columns:
|
||||||
logger.info(f"DI_values stats: {dataframe['DI_values'].describe().to_string()}")
|
logger.info(f"DI_values stats: {dataframe['DI_values'].describe().to_string()}")
|
||||||
logger.info(f"DI discarded predictions: {len(dataframe[dataframe['do_predict'] == 0])}")
|
logger.info(f"DI discarded predictions: {len(dataframe[dataframe['do_predict'] == 0])}")
|
||||||
|
|
||||||
# 清理数据
|
|
||||||
dataframe = dataframe.replace([np.inf, -np.inf], 0).ffill().fillna(0)
|
dataframe = dataframe.replace([np.inf, -np.inf], 0).ffill().fillna(0)
|
||||||
logger.info(f"Final columns in populate_indicators: {list(dataframe.columns)}")
|
logger.info(f"Final columns in populate_indicators: {list(dataframe.columns)}")
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
def populate_entry_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||||
enter_long_conditions = [
|
enter_long_conditions = [
|
||||||
qtpylib.crossed_above(df["rsi"], df["buy_rsi_pred"] + (5 if metadata["pair"] == "BTC/USDT" else 0)),
|
qtpylib.crossed_above(df["rsi"], df["buy_rsi_pred"]),
|
||||||
df["tema"] > df["tema"].shift(1),
|
df["tema"] > df["tema"].shift(1),
|
||||||
df["volume"] > 0,
|
df["volume"] > 0,
|
||||||
df["do_predict"] == 1,
|
df["do_predict"] == 1
|
||||||
df["up_or_down"] == 1
|
|
||||||
]
|
]
|
||||||
if enter_long_conditions:
|
df["entry_signal"] = reduce(lambda x, y: x & y, enter_long_conditions)
|
||||||
df.loc[
|
df["entry_signal"] = df["entry_signal"].rolling(window=2, min_periods=1).max().astype(bool)
|
||||||
reduce(lambda x, y: x & y, enter_long_conditions),
|
df.loc[
|
||||||
["enter_long", "enter_tag"]
|
df["entry_signal"],
|
||||||
] = (1, "long")
|
["enter_long", "enter_tag"]
|
||||||
|
] = (1, "long")
|
||||||
|
if df["entry_signal"].iloc[-1]:
|
||||||
|
logger.info(f"Entry signal triggered for {metadata['pair']}: rsi={df['rsi'].iloc[-1]}, buy_rsi_pred={df['buy_rsi_pred'].iloc[-1]}, do_predict={df['do_predict'].iloc[-1]}")
|
||||||
return df
|
return df
|
||||||
|
|
||||||
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
def populate_exit_trend(self, df: DataFrame, metadata: dict) -> DataFrame:
|
||||||
exit_long_conditions = [
|
exit_long_conditions = [
|
||||||
(qtpylib.crossed_above(df["rsi"], df["sell_rsi_pred"])) |
|
(qtpylib.crossed_above(df["rsi"], df["sell_rsi_pred"] - 5)) |
|
||||||
(df["close"] < df["close"].shift(1) * 0.98) |
|
(df["close"] < df["close"].shift(1) * 0.98) |
|
||||||
(df["close"] < df["bb_lowerband"]),
|
(df["close"] < df["bb_lowerband"]),
|
||||||
df["volume"] > 0,
|
df["volume"] > 0,
|
||||||
df["do_predict"] == 1,
|
df["do_predict"] == 1
|
||||||
df["up_or_down"] == 0
|
|
||||||
]
|
]
|
||||||
time_exit = (df["date"] >= df["date"].shift(1) + pd.Timedelta(days=1))
|
|
||||||
df.loc[
|
df.loc[
|
||||||
(reduce(lambda x, y: x & y, exit_long_conditions)) | time_exit,
|
reduce(lambda x, y: x & y, exit_long_conditions),
|
||||||
"exit_long"
|
"exit_long"
|
||||||
] = 1
|
] = 1
|
||||||
return df
|
return df
|
||||||
@ -300,9 +275,16 @@ class FreqaiExampleStrategy(IStrategy):
|
|||||||
self, pair: str, order_type: str, amount: float, rate: float,
|
self, pair: str, order_type: str, amount: float, rate: float,
|
||||||
time_in_force: str, current_time, entry_tag, side: str, **kwargs
|
time_in_force: str, current_time, entry_tag, side: str, **kwargs
|
||||||
) -> bool:
|
) -> bool:
|
||||||
|
logger.info(f"Confirming trade entry for {pair}, order_type: {order_type}, rate: {rate}, current_time: {current_time}")
|
||||||
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
df, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
||||||
last_candle = df.iloc[-1].squeeze()
|
last_candle = df.iloc[-1].squeeze()
|
||||||
if side == "long":
|
if side == "long":
|
||||||
if rate > (last_candle["close"] * (1 + 0.001)):
|
if order_type == "market":
|
||||||
return False
|
logger.info(f"Order confirmed for {pair}, rate: {rate} (market order)")
|
||||||
|
return True
|
||||||
|
if rate <= (last_candle["close"] * (1 + 0.01)):
|
||||||
|
logger.info(f"Order confirmed for {pair}, rate: {rate}")
|
||||||
|
return True
|
||||||
|
logger.info(f"Order rejected: rate {rate} exceeds threshold {last_candle['close'] * 1.01}")
|
||||||
|
return False
|
||||||
return True
|
return True
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user