backtraderTest/main.py
2025-03-12 15:06:14 +08:00

79 lines
2.5 KiB
Python

from __future__ import (absolute_import, division, print_function,
unicode_literals)
import datetime # For datetime objects
import os.path # To manage paths
import sys # To find out the script name (in argv[0])
# Import the backtrader platform
import backtrader as bt
# Create a Stratey
class TestStrategy(bt.Strategy):
def log(self, txt, dt=None):
''' Logging function for this strategy'''
if dt is None:
dt = self.datas[0].datetime.date(0) if len(self) > 0 else 'No Data'
print('%s, %s' % (dt, txt))
def __init__(self):
# Keep a reference to the "close" line in the data[0] dataseries
self.dataclose = self.datas[0].close
self.log('Strategy initialized', dt='Initialization')
def next(self):
# Log the current date and close price
self.log('Date: %s, Close: %.2f' % (self.datas[0].datetime.date(0), self.dataclose[0]))
self.log('High: %.2f, Low: %.2f' % (self.datas[0].high[0], self.datas[0].low[0]))
# Simple trading logic
if self.dataclose[0] < 30000:
self.log('BUY CREATE, Date: %s, Price: %.2f, Position: %d' % (self.datas[0].datetime.date(0), self.dataclose[0], self.position.size))
self.buy()
elif self.dataclose[0] > 30000 and self.position.size > 0:
self.log('SELL CREATE, Date: %s, Price: %.2f, Position: %d' % (self.datas[0].datetime.date(0), self.dataclose[0], self.position.size))
self.sell()
if __name__ == '__main__':
# Create a cerebro entity
cerebro = bt.Cerebro()
# Add a strategy
cerebro.addstrategy(TestStrategy)
# Datas are in a subfolder of the samples. Need to find where the script is
# because it could have been called from anywhere
modpath = os.path.dirname(os.path.abspath(sys.argv[0]))
datapath = os.path.join(modpath, 'candle_test_asc.csv')
# Create a Data Feed
data = bt.feeds.GenericCSVData(
dataname=datapath,
fromdate=datetime.datetime(2022, 1, 1),
todate=datetime.datetime(2022, 5, 31),
dtformat=('%Y-%m-%d %H:%M:%S'),
timeframe=bt.TimeFrame.Days,
compression=1,
datetime=0,
open=1,
high=2,
low=3,
close=4,
volume=5,
openinterest=-1)
# Add the Data Feed to Cerebro
cerebro.adddata(data)
# Set our desired cash start
cerebro.broker.setcash(100000.0)
# Print out the starting conditions
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
# Run over everything
cerebro.run()
# Print out the final result
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())