
The DeepSeek API reduces costs through disk caching, and DeepSeek-Coder-V2-0724 achieves GPT-4-Turbo-0409 level code capabilities with excellent math and reasoning skills.
400 lines
12 KiB
Lua
400 lines
12 KiB
Lua
local fn = vim.fn
|
|
local api = vim.api
|
|
|
|
local curl = require("plenary.curl")
|
|
|
|
local Utils = require("avante.utils")
|
|
local Config = require("avante.config")
|
|
local Tiktoken = require("avante.tiktoken")
|
|
|
|
---@class avante.AiBot
|
|
local M = {}
|
|
|
|
---@class EnvironmentHandler: table<[Provider], string>
|
|
local E = {
|
|
---@type table<Provider, string>
|
|
env = {
|
|
openai = "OPENAI_API_KEY",
|
|
claude = "ANTHROPIC_API_KEY",
|
|
azure = "AZURE_OPENAI_API_KEY",
|
|
deepseek = "DEEPSEEK_API_KEY",
|
|
},
|
|
_once = false,
|
|
}
|
|
|
|
E = setmetatable(E, {
|
|
---@param k Provider
|
|
__index = function(_, k)
|
|
return os.getenv(E.env[k]) and true or false
|
|
end,
|
|
})
|
|
|
|
--- return the environment variable name for the given provider
|
|
---@param provider? Provider
|
|
---@return string the envvar key
|
|
E.key = function(provider)
|
|
provider = provider or Config.provider
|
|
local var = E.env[provider]
|
|
return type(var) == "table" and var[1] ---@cast var string
|
|
or var
|
|
end
|
|
|
|
E.setup = function(var)
|
|
local Dressing = require("avante.ui.dressing")
|
|
|
|
if E._once then
|
|
return
|
|
end
|
|
|
|
---@param value string
|
|
---@return nil
|
|
local function on_confirm(value)
|
|
if value then
|
|
vim.fn.setenv(var, value)
|
|
E._once = true
|
|
else
|
|
if not E[Config.provider] then
|
|
vim.notify_once("Failed to set " .. var .. ". Avante won't work as expected", vim.log.levels.WARN)
|
|
end
|
|
end
|
|
end
|
|
|
|
api.nvim_create_autocmd({ "BufEnter", "BufWinEnter" }, {
|
|
pattern = "*",
|
|
once = true,
|
|
callback = function()
|
|
vim.defer_fn(function()
|
|
-- only mount if given buffer is not of buftype ministarter, dashboard, alpha, qf
|
|
local exclude_buftypes = { "dashboard", "alpha", "qf", "nofile" }
|
|
local exclude_filetypes = {
|
|
"NvimTree",
|
|
"Outline",
|
|
"help",
|
|
"dashboard",
|
|
"alpha",
|
|
"qf",
|
|
"ministarter",
|
|
"TelescopePrompt",
|
|
"gitcommit",
|
|
}
|
|
if
|
|
not vim.tbl_contains(exclude_buftypes, vim.bo.buftype)
|
|
and not vim.tbl_contains(exclude_filetypes, vim.bo.filetype)
|
|
then
|
|
Dressing.initialize_input_buffer({ opts = { prompt = "Enter " .. var .. ": " }, on_confirm = on_confirm })
|
|
end
|
|
end, 200)
|
|
end,
|
|
})
|
|
end
|
|
|
|
local system_prompt = [[
|
|
You are an excellent programming expert.
|
|
]]
|
|
|
|
local base_user_prompt = [[
|
|
Your primary task is to suggest code modifications with precise line number ranges. Follow these instructions meticulously:
|
|
|
|
1. Carefully analyze the original code, paying close attention to its structure and line numbers. Line numbers start from 1 and include ALL lines, even empty ones.
|
|
|
|
2. When suggesting modifications:
|
|
a. Use the language in the question to reply. If there are non-English parts in the question, use the language of those parts.
|
|
b. Explain why the change is necessary or beneficial.
|
|
c. Provide the exact code snippet to be replaced using this format:
|
|
|
|
Replace lines: {{start_line}}-{{end_line}}
|
|
```{{language}}
|
|
{{suggested_code}}
|
|
```
|
|
|
|
3. Crucial guidelines for suggested code snippets:
|
|
- Only apply the change(s) suggested by the most recent assistant message (before your generation).
|
|
- Do not make any unrelated changes to the code.
|
|
- Produce a valid full rewrite of the entire original file without skipping any lines. Do not be lazy!
|
|
- Do not arbitrarily delete pre-existing comments/empty Lines.
|
|
- Do not omit large parts of the original file for no reason.
|
|
- Do not omit any needed changes from the requisite messages/code blocks.
|
|
- If there is a clicked code block, bias towards just applying that (and applying other changes implied).
|
|
- Please keep your suggested code changes minimal, and do not include irrelevant lines in the code snippet.
|
|
|
|
4. Crucial guidelines for line numbers:
|
|
- The content regarding line numbers must strictly follow the format "Replace lines: {{start_line}}-{{end_line}}".
|
|
- The range {{start_line}}-{{end_line}} is INCLUSIVE. Both start_line and end_line are included in the replacement.
|
|
- Count EVERY line, including empty lines and comments lines, comments. Do not be lazy!
|
|
- For single-line changes, use the same number for start and end lines.
|
|
- For multi-line changes, ensure the range covers ALL affected lines, from the very first to the very last.
|
|
- Double-check that your line numbers align perfectly with the original code structure.
|
|
|
|
5. Final check:
|
|
- Review all suggestions, ensuring each line number is correct, especially the start_line and end_line.
|
|
- Confirm that no unrelated code is accidentally modified or deleted.
|
|
- Verify that the start_line and end_line correctly include all intended lines for replacement.
|
|
- Perform a final alignment check to ensure your line numbers haven't shifted, especially the start_line.
|
|
- Double-check that your line numbers align perfectly with the original code structure.
|
|
- Do not show the full content after these modifications.
|
|
|
|
Remember: Accurate line numbers are CRITICAL. The range start_line to end_line must include ALL lines to be replaced, from the very first to the very last. Double-check every range before finalizing your response, paying special attention to the start_line to ensure it hasn't shifted down. Ensure that your line numbers perfectly match the original code structure without any overall shift.
|
|
]]
|
|
|
|
local function call_claude_api_stream(question, code_lang, code_content, selected_code_content, on_chunk, on_complete)
|
|
local api_key = os.getenv(E.key("claude"))
|
|
|
|
local tokens = Config.claude.max_tokens
|
|
local headers = {
|
|
["Content-Type"] = "application/json",
|
|
["x-api-key"] = api_key,
|
|
["anthropic-version"] = "2023-06-01",
|
|
["anthropic-beta"] = "prompt-caching-2024-07-31",
|
|
}
|
|
|
|
local code_prompt_obj = {
|
|
type = "text",
|
|
text = string.format("<code>```%s\n%s```</code>", code_lang, code_content),
|
|
}
|
|
|
|
if Tiktoken.count(code_prompt_obj.text) > 1024 then
|
|
code_prompt_obj.cache_control = { type = "ephemeral" }
|
|
end
|
|
|
|
if selected_code_content then
|
|
code_prompt_obj.text = string.format("<code_context>```%s\n%s```</code_context>", code_lang, code_content)
|
|
end
|
|
|
|
local message_content = {
|
|
code_prompt_obj,
|
|
}
|
|
|
|
if selected_code_content then
|
|
local selected_code_obj = {
|
|
type = "text",
|
|
text = string.format("<code>```%s\n%s```</code>", code_lang, selected_code_content),
|
|
}
|
|
|
|
if Tiktoken.count(selected_code_obj.text) > 1024 then
|
|
selected_code_obj.cache_control = { type = "ephemeral" }
|
|
end
|
|
|
|
table.insert(message_content, selected_code_obj)
|
|
end
|
|
|
|
table.insert(message_content, {
|
|
type = "text",
|
|
text = string.format("<question>%s</question>", question),
|
|
})
|
|
|
|
local user_prompt = base_user_prompt
|
|
|
|
local user_prompt_obj = {
|
|
type = "text",
|
|
text = user_prompt,
|
|
}
|
|
|
|
if Tiktoken.count(user_prompt_obj.text) > 1024 then
|
|
user_prompt_obj.cache_control = { type = "ephemeral" }
|
|
end
|
|
|
|
table.insert(message_content, user_prompt_obj)
|
|
|
|
local body = {
|
|
model = Config.claude.model,
|
|
system = system_prompt,
|
|
messages = {
|
|
{
|
|
role = "user",
|
|
content = message_content,
|
|
},
|
|
},
|
|
stream = true,
|
|
temperature = Config.claude.temperature,
|
|
max_tokens = tokens,
|
|
}
|
|
|
|
local url = Utils.trim_suffix(Config.claude.endpoint, "/") .. "/v1/messages"
|
|
|
|
curl.post(url, {
|
|
---@diagnostic disable-next-line: unused-local
|
|
stream = function(err, data, job)
|
|
if err then
|
|
on_complete(err)
|
|
return
|
|
end
|
|
if not data then
|
|
return
|
|
end
|
|
for _, line in ipairs(vim.split(data, "\n")) do
|
|
if line:sub(1, 6) ~= "data: " then
|
|
return
|
|
end
|
|
vim.schedule(function()
|
|
local success, parsed = pcall(fn.json_decode, line:sub(7))
|
|
if not success then
|
|
error("Error: failed to parse json: " .. parsed)
|
|
return
|
|
end
|
|
if parsed and parsed.type == "content_block_delta" then
|
|
on_chunk(parsed.delta.text)
|
|
elseif parsed and parsed.type == "message_stop" then
|
|
-- Stream request completed
|
|
on_complete(nil)
|
|
elseif parsed and parsed.type == "error" then
|
|
-- Stream request completed
|
|
on_complete(parsed)
|
|
end
|
|
end)
|
|
end
|
|
end,
|
|
headers = headers,
|
|
body = fn.json_encode(body),
|
|
})
|
|
end
|
|
|
|
local function call_openai_api_stream(question, code_lang, code_content, selected_code_content, on_chunk, on_complete)
|
|
local api_key = os.getenv(E.key("openai"))
|
|
local user_prompt = base_user_prompt
|
|
.. "\n\nCODE:\n"
|
|
.. "```"
|
|
.. code_lang
|
|
.. "\n"
|
|
.. code_content
|
|
.. "\n```"
|
|
.. "\n\nQUESTION:\n"
|
|
.. question
|
|
|
|
if selected_code_content then
|
|
user_prompt = base_user_prompt
|
|
.. "\n\nCODE CONTEXT:\n"
|
|
.. "```"
|
|
.. code_lang
|
|
.. "\n"
|
|
.. code_content
|
|
.. "\n```"
|
|
.. "\n\nCODE:\n"
|
|
.. "```"
|
|
.. code_lang
|
|
.. "\n"
|
|
.. selected_code_content
|
|
.. "\n```"
|
|
.. "\n\nQUESTION:\n"
|
|
.. question
|
|
end
|
|
|
|
local url, headers, body
|
|
if Config.provider == "azure" then
|
|
api_key = os.getenv(E.key("azure"))
|
|
url = Config.azure.endpoint
|
|
.. "/openai/deployments/"
|
|
.. Config.azure.deployment
|
|
.. "/chat/completions?api-version="
|
|
.. Config.azure.api_version
|
|
headers = {
|
|
["Content-Type"] = "application/json",
|
|
["api-key"] = api_key,
|
|
}
|
|
body = {
|
|
messages = {
|
|
{ role = "system", content = system_prompt },
|
|
{ role = "user", content = user_prompt },
|
|
},
|
|
temperature = Config.azure.temperature,
|
|
max_tokens = Config.azure.max_tokens,
|
|
stream = true,
|
|
}
|
|
elseif Config.provider == "deepseek" then
|
|
api_key = os.getenv(E.key("deepseek"))
|
|
url = Utils.trim_suffix(Config.deepseek.endpoint, "/") .. "/chat/completions"
|
|
headers = {
|
|
["Content-Type"] = "application/json",
|
|
["Authorization"] = "Bearer " .. api_key,
|
|
}
|
|
body = {
|
|
model = Config.deepseek.model,
|
|
messages = {
|
|
{ role = "system", content = system_prompt },
|
|
{ role = "user", content = user_prompt },
|
|
},
|
|
temperature = Config.deepseek.temperature,
|
|
max_tokens = Config.deepseek.max_tokens,
|
|
stream = true,
|
|
}
|
|
else
|
|
url = Utils.trim_suffix(Config.openai.endpoint, "/") .. "/v1/chat/completions"
|
|
headers = {
|
|
["Content-Type"] = "application/json",
|
|
["Authorization"] = "Bearer " .. api_key,
|
|
}
|
|
body = {
|
|
model = Config.openai.model,
|
|
messages = {
|
|
{ role = "system", content = system_prompt },
|
|
{ role = "user", content = user_prompt },
|
|
},
|
|
temperature = Config.openai.temperature,
|
|
max_tokens = Config.openai.max_tokens,
|
|
stream = true,
|
|
}
|
|
end
|
|
|
|
curl.post(url, {
|
|
---@diagnostic disable-next-line: unused-local
|
|
stream = function(err, data, job)
|
|
if err then
|
|
on_complete(err)
|
|
return
|
|
end
|
|
if not data then
|
|
return
|
|
end
|
|
for _, line in ipairs(vim.split(data, "\n")) do
|
|
if line:sub(1, 6) ~= "data: " then
|
|
return
|
|
end
|
|
vim.schedule(function()
|
|
local piece = line:sub(7)
|
|
local success, parsed = pcall(fn.json_decode, piece)
|
|
if not success then
|
|
if piece == "[DONE]" then
|
|
on_complete(nil)
|
|
return
|
|
end
|
|
error("Error: failed to parse json: " .. parsed)
|
|
return
|
|
end
|
|
if parsed and parsed.choices and parsed.choices[1] then
|
|
local choice = parsed.choices[1]
|
|
if choice.finish_reason == "stop" then
|
|
on_complete(nil)
|
|
elseif choice.delta and choice.delta.content then
|
|
on_chunk(choice.delta.content)
|
|
end
|
|
end
|
|
end)
|
|
end
|
|
end,
|
|
headers = headers,
|
|
body = fn.json_encode(body),
|
|
})
|
|
end
|
|
|
|
---@param question string
|
|
---@param code_lang string
|
|
---@param code_content string
|
|
---@param selected_content_content string | nil
|
|
---@param on_chunk fun(chunk: string): any
|
|
---@param on_complete fun(err: string|nil): any
|
|
function M.call_ai_api_stream(question, code_lang, code_content, selected_content_content, on_chunk, on_complete)
|
|
if Config.provider == "openai" or Config.provider == "azure" or Config.provider == "deepseek" then
|
|
call_openai_api_stream(question, code_lang, code_content, selected_content_content, on_chunk, on_complete)
|
|
elseif Config.provider == "claude" then
|
|
call_claude_api_stream(question, code_lang, code_content, selected_content_content, on_chunk, on_complete)
|
|
end
|
|
end
|
|
|
|
function M.setup()
|
|
local has = E[Config.provider]
|
|
if not has then
|
|
E.setup(E.key())
|
|
end
|
|
end
|
|
|
|
return M
|