197 lines
5.9 KiB
Rust

use hf_hub::{api::sync::ApiBuilder, Repo, RepoType};
use mlua::prelude::*;
use regex::Regex;
use std::path::PathBuf;
use std::sync::{Arc, Mutex};
use tiktoken_rs::{get_bpe_from_model, CoreBPE};
use tokenizers::Tokenizer;
struct Tiktoken {
bpe: CoreBPE,
}
impl Tiktoken {
fn new(model: &str) -> Self {
let bpe = get_bpe_from_model(model).unwrap();
Self { bpe }
}
fn encode(&self, text: &str) -> (Vec<u32>, usize, usize) {
let tokens = self.bpe.encode_with_special_tokens(text);
let num_tokens = tokens.len();
let num_chars = text.chars().count();
(tokens, num_tokens, num_chars)
}
}
struct HuggingFaceTokenizer {
tokenizer: Tokenizer,
}
fn is_valid_url(url: &str) -> bool {
let url_regex = Regex::new(r"^https?://[^\s/$.?#].[^\s]*$").unwrap();
url_regex.is_match(url)
}
impl HuggingFaceTokenizer {
fn new(model: &str) -> Self {
let tokenizer_path = if is_valid_url(model) {
Self::get_cached_tokenizer(model)
} else {
// Use existing HuggingFace Hub logic for model names
let identifier = model.to_string();
let api = ApiBuilder::new().with_progress(false).build().unwrap();
let repo = Repo::new(identifier, RepoType::Model);
let api = api.repo(repo);
api.get("tokenizer.json").unwrap()
};
let tokenizer = Tokenizer::from_file(tokenizer_path).unwrap();
Self { tokenizer }
}
fn encode(&self, text: &str) -> (Vec<u32>, usize, usize) {
let encoding = self.tokenizer.encode(text, false).unwrap();
let tokens = encoding.get_ids().to_vec();
let num_tokens = tokens.len();
let num_chars = encoding.get_offsets().last().unwrap().1;
(tokens, num_tokens, num_chars)
}
fn get_cached_tokenizer(url: &str) -> PathBuf {
let cache_dir = dirs::home_dir()
.map(|h| h.join(".cache").join("avante"))
.unwrap();
std::fs::create_dir_all(&cache_dir).unwrap();
// Extract filename from URL
let filename = url.split('/').last().unwrap();
let cached_path = cache_dir.join(filename);
if !cached_path.exists() {
let response = ureq::get(url).call().unwrap();
let mut file = std::fs::File::create(&cached_path).unwrap();
let mut reader = response.into_reader();
std::io::copy(&mut reader, &mut file).unwrap();
}
cached_path
}
}
enum TokenizerType {
Tiktoken(Tiktoken),
HuggingFace(HuggingFaceTokenizer),
}
struct State {
tokenizer: Mutex<Option<TokenizerType>>,
}
impl State {
fn new() -> Self {
State {
tokenizer: Mutex::new(None),
}
}
}
fn encode(state: &State, text: &str) -> LuaResult<(Vec<u32>, usize, usize)> {
let tokenizer = state.tokenizer.lock().unwrap();
match tokenizer.as_ref() {
Some(TokenizerType::Tiktoken(tokenizer)) => Ok(tokenizer.encode(text)),
Some(TokenizerType::HuggingFace(tokenizer)) => Ok(tokenizer.encode(text)),
None => Err(LuaError::RuntimeError(
"Tokenizer not initialized".to_string(),
)),
}
}
fn from_pretrained(state: &State, model: &str) {
let mut tokenizer_mutex = state.tokenizer.lock().unwrap();
*tokenizer_mutex = Some(match model {
"gpt-4o" => TokenizerType::Tiktoken(Tiktoken::new(model)),
_ => TokenizerType::HuggingFace(HuggingFaceTokenizer::new(model)),
});
}
#[mlua::lua_module]
fn avante_tokenizers(lua: &Lua) -> LuaResult<LuaTable> {
let core = State::new();
let state = Arc::new(core);
let state_clone = Arc::clone(&state);
let exports = lua.create_table()?;
exports.set(
"from_pretrained",
lua.create_function(move |_, model: String| {
from_pretrained(&state, model.as_str());
Ok(())
})?,
)?;
exports.set(
"encode",
lua.create_function(move |_, text: String| encode(&state_clone, text.as_str()))?,
)?;
Ok(exports)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_tiktoken() {
let model = "gpt-4o";
let source = "Hello, world!";
let tokenizer = Tiktoken::new(model);
let (tokens, num_tokens, num_chars) = tokenizer.encode(source);
assert_eq!(tokens, vec![13225, 11, 2375, 0]);
assert_eq!(num_tokens, 4);
assert_eq!(num_chars, source.chars().count());
}
#[test]
fn test_hf() {
let model = "gpt2";
let source = "Hello, world!";
let tokenizer = HuggingFaceTokenizer::new(model);
let (tokens, num_tokens, num_chars) = tokenizer.encode(source);
assert_eq!(tokens, vec![15496, 11, 995, 0]);
assert_eq!(num_tokens, 4);
assert_eq!(num_chars, source.chars().count());
}
#[test]
fn test_roundtrip() {
let state = State::new();
let source = "Hello, world!";
let model = "gpt2";
from_pretrained(&state, model);
let (tokens, num_tokens, num_chars) = encode(&state, "Hello, world!").unwrap();
assert_eq!(tokens, vec![15496, 11, 995, 0]);
assert_eq!(num_tokens, 4);
assert_eq!(num_chars, source.chars().count());
}
// For example: https://storage.googleapis.com/cohere-public/tokenizers/command-r-08-2024.json
// Disable testing on GitHub Actions to avoid rate limiting and file size limits
#[test]
fn test_public_url() {
if std::env::var("GITHUB_ACTIONS").is_ok() {
return;
}
let state = State::new();
let source = "Hello, world!";
let model =
"https://storage.googleapis.com/cohere-public/tokenizers/command-r-08-2024.json";
from_pretrained(&state, model);
let (tokens, num_tokens, num_chars) = encode(&state, "Hello, world!").unwrap();
assert_eq!(tokens, vec![28339, 19, 3845, 8]);
assert_eq!(num_tokens, 4);
assert_eq!(num_chars, source.chars().count());
}
}